HashMap(JDK1.8)源码+底层数据结构分析

news2025/1/24 2:23:57
  • HashMap 简介
  • 底层数据结构分析
    • JDK1.8 之前
    • JDK1.8 之后
  • HashMap 源码分析
    • 构造方法
    • put 方法
    • get 方法
    • resize 方法
  • HashMap 常用方法测试

感谢 changfubai 对本文的改进做出的贡献!

HashMap 简介

HashMap 主要用来存放键值对,它基于哈希表的 Map 接口实现,是常用的 Java 集合之一。

JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。

JDK1.8 之后 HashMap 的组成多了红黑树,在满足下面两个条件之后,会执行链表转红黑树操作,以此来加快搜索速度。

  • 链表长度大于阈值(默认为 8)
  • HashMap 数组长度超过 64

底层数据结构分析

JDK1.8 之前

JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列

HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。

所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。

JDK 1.8 HashMap 的 hash 方法源码:

JDK 1.8 的 hash 方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。

    static final int hash(Object key) {
      int h;
      // key.hashCode():返回散列值也就是hashcode
      // ^ :按位异或
      // >>>:无符号右移,忽略符号位,空位都以0补齐
      return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
  }

对比一下 JDK1.7 的 HashMap 的 hash 方法源码.

static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).

    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。

所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cwUL252F-1677050195849)(https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-7/jdk1.8之前的内部结构.png)]

JDK1.8 之后

相比于之前的版本,JDK1.8 以后在解决哈希冲突时有了较大的变化。

当链表长度大于阈值(默认为 8)时,会首先调用 treeifyBin()方法。这个方法会根据 HashMap 数组来决定是否转换为红黑树。只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是执行 resize() 方法对数组扩容。相关源码这里就不贴了,重点关注 treeifyBin()方法即可!

类的属性:

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 序列号
    private static final long serialVersionUID = 362498820763181265L;
    // 默认的初始容量是16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    // 最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    // 默认的填充因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 当桶(bucket)上的结点数大于这个值时会转成红黑树
    static final int TREEIFY_THRESHOLD = 8;
    // 当桶(bucket)上的结点数小于这个值时树转链表
    static final int UNTREEIFY_THRESHOLD = 6;
    // 桶中结构转化为红黑树对应的table的最小大小
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 存储元素的数组,总是2的幂次倍
    transient Node<k,v>[] table;
    // 存放具体元素的集
    transient Set<map.entry<k,v>> entrySet;
    // 存放元素的个数,注意这个不等于数组的长度。
    transient int size;
    // 每次扩容和更改map结构的计数器
    transient int modCount;
    // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
    int threshold;
    // 加载因子
    final float loadFactor;
}
  • loadFactor 加载因子

    loadFactor 加载因子是控制数组存放数据的疏密程度,loadFactor 越趋近于 1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor 越小,也就是趋近于 0,数组中存放的数据(entry)也就越少,也就越稀疏。

    loadFactor 太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor 的默认值为 0.75f 是官方给出的一个比较好的临界值

    给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量达到了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。

  • threshold

    threshold = capacity * loadFactor当 Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准

Node 节点类源码:

// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> {
       final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较
       final K key;//键
       V value;//值
       // 指向下一个节点
       Node<K,V> next;
       Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
        // 重写hashCode()方法
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
        // 重写 equals() 方法
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
}

树节点类源码:

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // 父
        TreeNode<K,V> left;    // 左
        TreeNode<K,V> right;   // 右
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;           // 判断颜色
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
        // 返回根节点
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
       }

HashMap 源码分析

构造方法

HashMap 中有四个构造方法,它们分别如下:

    // 默认构造函数。
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted
     }

     // 包含另一个“Map”的构造函数
     public HashMap(Map<? extends K, ? extends V> m) {
         this.loadFactor = DEFAULT_LOAD_FACTOR;
         putMapEntries(m, false);//下面会分析到这个方法
     }

     // 指定“容量大小”的构造函数
     public HashMap(int initialCapacity) {
         this(initialCapacity, DEFAULT_LOAD_FACTOR);
     }

     // 指定“容量大小”和“加载因子”的构造函数
     public HashMap(int initialCapacity, float loadFactor) {
         if (initialCapacity < 0)
             throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
         if (initialCapacity > MAXIMUM_CAPACITY)
             initialCapacity = MAXIMUM_CAPACITY;
         if (loadFactor <= 0 || Float.isNaN(loadFactor))
             throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
         this.loadFactor = loadFactor;
         this.threshold = tableSizeFor(initialCapacity);
     }

putMapEntries 方法:

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        // 判断table是否已经初始化
        if (table == null) { // pre-size
            // 未初始化,s为m的实际元素个数
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                    (int)ft : MAXIMUM_CAPACITY);
            // 计算得到的t大于阈值,则初始化阈值
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

put 方法

HashMap 只提供了 put 用于添加元素,putVal 方法只是给 put 方法调用的一个方法,并没有提供给用户使用。

对 putVal 方法添加元素的分析如下:

  1. 如果定位到的数组位置没有元素 就直接插入。
  2. 如果定位到的数组位置有元素就和要插入的 key 比较,如果 key 相同就直接覆盖,如果 key 不相同,就判断 p 是否是一个树节点,如果是就调用e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value)将元素添加进入。如果不是就遍历链表插入(插入的是链表尾部)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cxqqocoy-1677050195851)(https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-7/put方法.png)]

说明:上图有两个小问题:

  • 直接覆盖之后应该就会 return,不会有后续操作。参考 JDK8 HashMap.java 658 行(issue#608)。
  • 当链表长度大于阈值(默认为 8)并且 HashMap 数组长度超过 64 的时候才会执行链表转红黑树的操作,否则就只是对数组扩容。参考 HashMap 的 treeifyBin() 方法(issue#1087)。
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素
    else {
        Node<K,V> e; K k;
        // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                // 将第一个元素赋值给e,用e来记录
                e = p;
        // hash值不相等,即key不相等;为红黑树结点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 为链表结点
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法
                    // 这个方法会根据 HashMap 数组来决定是否转换为红黑树。
                    // 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是对数组扩容。
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) {
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
}

我们再来对比一下 JDK1.7 put 方法的代码

对于 put 方法的分析如下:

  • ① 如果定位到的数组位置没有元素 就直接插入。
  • ② 如果定位到的数组位置有元素,遍历以这个元素为头结点的链表,依次和插入的 key 比较,如果 key 相同就直接覆盖,不同就采用头插法插入元素。
public V put(K key, V value)
    if (table == EMPTY_TABLE) {
    inflateTable(threshold);
}
    if (key == null)
        return putForNullKey(value);
    int hash = hash(key);
    int i = indexFor(hash, table.length);
    for (Entry<K,V> e = table[i]; e != null; e = e.next) { // 先遍历
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    modCount++;
    addEntry(hash, key, value, i);  // 再插入
    return null;
}

get 方法

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 数组元素相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个节点
        if ((e = first.next) != null) {
            // 在树中get
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 在链表中get
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

resize 方法

进行扩容,会伴随着一次重新 hash 分配,并且会遍历 hash 表中所有的元素,是非常耗时的。在编写程序中,要尽量避免 resize。

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {
        // signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else {
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

HashMap 常用方法测试

package map;

import java.util.Collection;
import java.util.HashMap;
import java.util.Set;

public class HashMapDemo {

    public static void main(String[] args) {
        HashMap<String, String> map = new HashMap<String, String>();
        // 键不能重复,值可以重复
        map.put("san", "张三");
        map.put("si", "李四");
        map.put("wu", "王五");
        map.put("wang", "老王");
        map.put("wang", "老王2");// 老王被覆盖
        map.put("lao", "老王");
        System.out.println("-------直接输出hashmap:-------");
        System.out.println(map);
        /**
         * 遍历HashMap
         */
        // 1.获取Map中的所有键
        System.out.println("-------foreach获取Map中所有的键:------");
        Set<String> keys = map.keySet();
        for (String key : keys) {
            System.out.print(key+"  ");
        }
        System.out.println();//换行
        // 2.获取Map中所有值
        System.out.println("-------foreach获取Map中所有的值:------");
        Collection<String> values = map.values();
        for (String value : values) {
            System.out.print(value+"  ");
        }
        System.out.println();//换行
        // 3.得到key的值的同时得到key所对应的值
        System.out.println("-------得到key的值的同时得到key所对应的值:-------");
        Set<String> keys2 = map.keySet();
        for (String key : keys2) {
            System.out.print(key + ":" + map.get(key)+"   ");

        }
        /**
         * 如果既要遍历key又要value,那么建议这种方式,因为如果先获取keySet然后再执行map.get(key),map内部会执行两次遍历。
         * 一次是在获取keySet的时候,一次是在遍历所有key的时候。
         */
        // 当我调用put(key,value)方法的时候,首先会把key和value封装到
        // Entry这个静态内部类对象中,把Entry对象再添加到数组中,所以我们想获取
        // map中的所有键值对,我们只要获取数组中的所有Entry对象,接下来
        // 调用Entry对象中的getKey()和getValue()方法就能获取键值对了
        Set<java.util.Map.Entry<String, String>> entrys = map.entrySet();
        for (java.util.Map.Entry<String, String> entry : entrys) {
            System.out.println(entry.getKey() + "--" + entry.getValue());
        }

        /**
         * HashMap其他常用方法
         */
        System.out.println("after map.size():"+map.size());
        System.out.println("after map.isEmpty():"+map.isEmpty());
        System.out.println(map.remove("san"));
        System.out.println("after map.remove():"+map);
        System.out.println("after map.get(si):"+map.get("si"));
        System.out.println("after map.containsKey(si):"+map.containsKey("si"));
        System.out.println("after containsValue(李四):"+map.containsValue("李四"));
        System.out.println(map.replace("si", "李四2"));
        System.out.println("after map.replace(si, 李四2):"+map);
    }

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/363654.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【React npm】从零搭建react脚手架,发布组件库到npm,并实现按需加载(二)

发布react组件库前情回顾介绍搭建脚手架配置babelrc配置jsconfig写入组件demo修改主入口文件配置生产环境webpack配置package.json发布实现按需加载前情回顾 前面写过一篇&#xff0c;发布单个组件到npm的&#xff1a; https://blog.csdn.net/tuzi007a/article/details/12911…

Anaconda环境配置

1.进入清华大学镜像网站Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror&#xff0c;下载稳定版Anaconda3-5.2.0&#xff0c;如下图。2.放到整理好的文件夹中&#xff0c;双击安装包进行安装。3.安装过程中需要改变的默认值如下&#xff…

Linux 基础知识之文件系统

目录一、文件系统1.文件种类2.Linux和Windows文件后缀的不同3.查看文件类型3.绝对路径与相对路径二、系统分区三、目录结构一、文件系统 1.文件种类 Linux中一切皆文件。目光所及&#xff0c;皆是文件。文件的种类共有七种&#xff0c;每种文件都有自己的独特标识&#xff1a;…

MYSQL 密码修改 (四种方式)

注 &#xff1a; 我们所谓的密码修改肯定是先指的是 你已经清楚用户的原密码&#xff0c;是对原密码进行了修改并不是你忘记了密码&#xff0c;然后设置新密码~&#xff01;&#xff01;方式一 &#xff1a; 使用 mysqladmin示例 &#xff1a; [rootbogon ~]# mysqladmin -uroo…

python文件编译为pyc后运行

一、pyc文件我们开发一个python脚本&#xff0c;文件的后缀为.py。如果运行这个py文件&#xff0c;Python内部会先将源码文件&#xff08;.py文件&#xff09;编译成字节码&#xff08;byte code&#xff09;文件&#xff08;.pyc文件&#xff09;。接着运行编译后的字节码&…

【Spark分布式内存计算框架——离线综合实战】5. 业务报表分析

第三章 业务报表分析 一般的系统需要使用报表来展示公司的运营情况、 数据情况等&#xff0c;本章节对数据进行一些常见报表的开发&#xff0c;广告数据业务报表数据流向图如下所示&#xff1a; 具体报表的需求如下&#xff1a; 相关报表开发说明如下&#xff1a; 第一、数据…

【总结】python3启动web服务引发的一系列问题

背景 在某行的实施项目&#xff0c;需要使用python3环境运行某些py脚本。 由于行内交付的机器已自带python3 &#xff0c;没有采取自行安装python3&#xff0c;但是运行python脚本时报没有tornado module。 错误信息 ModuleNotFoundError&#xff1a;No module named ‘torn…

Unity截屏时将背景的透明度设为0

常用的截屏函数是&#xff1a; UnityEngine.ScreenCapture.CaptureScreenshot(fileName, 5); //5代表dpi大小&#xff0c;数字越大越清晰但是这样保存图片是不能将黑色背景的透明度设为0&#xff0c;最终还是24bit图。 如果将背景透明度设为0而渲染物体透明度设为255&#xff…

学插画的线上机构排名

学插画哪个线上机构好&#xff0c;5个靠谱的插画网课推荐&#xff01;给大家梳理了国内5家专业的插画师培训班&#xff0c;最新5大插画班排行榜&#xff0c;各有优势和特色&#xff01; 一&#xff1a;插画线上培训机构排名 1、轻微课&#xff08;五颗星&#xff09; 主打课程有…

【C语言】函数栈帧的创建与销毁

Yan-英杰的主页 悟已往之不谏 知来者之可追 目录 ​0.ebp和esp是如何来维护栈帧的呢&#xff1f; 1.为什么局部变量的值不初始化是随机的&#xff1f; ​2.局部变量是怎么创建的&#xff1f; ​3 .函数是如何传参的&#xff1f;传参的顺序是怎样的 4.函数是如何调用的 ​…

scrapy-redis分布式爬虫学习记录

目录 1. scrapy-redis是什么&#xff1f; 2. scrapy-redis工作原理 3.分布式架构 4. scrapy-redis的源码分析 5. 部署scrapy-redis 6. scrapy-redis的基本使用 6.1 redis数据库基本表项 6.2 在scrapy项目的基础进行更改 7. redis数据转存入mysql数据库 课程推荐&#…

大学生成人插画培训机构盘点

成人插画培训机构哪个好&#xff0c;成人学插画如何选培训班&#xff1f;给大家梳理了国内较好的插画培训机构排名&#xff0c;各有优势和特色&#xff0c;供大家参考&#xff01; 一&#xff1a;国内成人插画培训机构排名 1、轻微课&#xff08;五颗星&#xff09; 主打课程有…

Head First设计模式---3.装饰者模式

3.1装饰者模式 亦称&#xff1a; 装饰者模式、装饰器模式、Wrapper、Decorator 装饰模式是一种结构型设计模式&#xff0c; 允许你通过将对象放入包含行为的特殊封装对象中来为原对象绑定新的行为。 举个例子&#xff1a;天气很冷&#xff0c;我们一件一件穿衣服&#xff0c…

学习Flask之五、数据库

学习Flask之五、数据库 数据库有组织的存贮应用数据。根据需要应用发布查询追踪特定部分。网络应用最常用的数据库是基于关系模式的&#xff0c;也称为SQL数据库&#xff0c;引用结构化查询语句。但是近年来&#xff0c;面向文档和键值的数据库&#xff0c;非正式的统称为NoSQ…

乐友商城学习笔记(一)

SpringCloud 什么是SpringCloud 在SpringBoot基础上构建的微服务框架固定步骤 1.引入组件的启动器2.覆盖默认配置3.在引导类上添加相应的注解 eureka 注册中心&#xff0c;服务的注册与发现服务端 1.引入服务器启动器&#xff1a;eureka-server2.添加了配置 spring.applicati…

【Git】使用Git上传项目到远程仓库Gitee码云步骤详解

电脑里存放了很多项目&#xff0c;有的备份&#xff0c;有的没备份&#xff0c;如果不仔细分类管理的话&#xff0c;时间一长&#xff0c;到时看到那就会觉得非常杂乱&#xff0c;很难整理&#xff0c;这里有一个叫源代码托管&#xff0c;用过它的都知道&#xff0c;方便管理和…

如何下载阅读Spring源码-全过程详解

这篇文章记录了下载spring源码和在IDEA中打开运行的全过程&#xff0c;并且记录了过程中遇到的问题和解决方案&#xff0c;适合需要学习spring源码的同学阅读。 1.spring源码下载地址 通过Git下载spring-framework项目源码&#xff1a; git clone https://github.com/spring…

Document-Level event Extraction via human-like reading process 论文解读

Document-Level event Extraction via human-like reading process 论文&#xff1a;2202.03092v1.pdf (arxiv.org) 代码&#xff1a;无 期刊/会议&#xff1a;ICASSP 2022 摘要 文档级事件抽取(DEE)特别困难&#xff0c;因为它提出了两个挑战:论元分散和多事件。第一个挑战…

TPM 2.0实例探索2 —— LUKS磁盘加密(1)

本文大部分内容取自&#xff1a; LUKS磁盘格式_小写的毛毛的博客-CSDN博客_luks 如何破解LUKS加密 一、LUKS介绍 1. 什么是LUKS LUKS是“Linux Unified Key Setup”的简写&#xff0c;是 Linux 硬盘加密的标准。LUKS通过提供标准的磁盘格式&#xff0c;不仅可以促进发行版之…

短链或H5唤醒(跳转)APP应用

唤醒APP(两种方法) 一.短链唤醒(跳转)app ⭐ 短链跳转到APP&#xff0c;当如果用户手机不存在APP(某个应用)将会进入到官网页面。 app links实现 在android studio菜单栏Tools->App Links Ass点击,效果图如下 2.配置如下 点击ok,生成如下效果图 3.完成第二步后,会自动…