二进制部署K8S

news2024/12/27 11:22:54

目录

一、环境准备

1、常见的k8s部署方式

2、关闭防火墙

3、关闭selinux

4、关闭swap

5、根据规划设置主机名

6、在master添加hosts

7、将桥接的IPv4流量传递到iptables的链

8、时间同步

二、部署etcd集群

1、master节点部署

2、查看证书的信息

2.1 创建k8s工作目录

2.2 上传etcd-cert.sh 和etcd.sh 到/opt/k8s/ 目录中

2.3 创建用于生成CA证书、etcd服务器证书以及私钥的目录

2.4 生成CA证书、etcd服务器证书以及私钥

2.5 上传etcd-v3.3.10-1inux-amd64.tar.gz 到/opt/k8s/ 目录中,解压etcd 压缩包

3、etcdctl主要为etcd服务提供了命令行操作

3.1 创建用于存放etcd配置文件,命令文件,证书的目录

3.2 进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况

3.3 另外打开一个窗口查看etcd进程是否正常

3.4 把etcd相关证书文件和命令文件全部拷贝到另外两个etcd集群节点

3.5 把etcd服务管理文件拷贝到另外两个etcd集群节点

4、在node1与node2节点修改

4.1 在node1节点修改

4.2 在node2节点修改

5、在master1节点上进行启动

5.1 首先在master1节点上进行启动

5.2 接着在node1和node2节点分别进行启动

5.3 在master1 节点上操作

5.4 检查etcd群集状态

6、部署docker引擎

6.1 所有node节点部署docker引擎

三、flannel网络配置

1、flannel网络配置

Flannel工作原理:

2、在master1 节点 添加flannel 网络配置信息

2.1 在node01 节点上操作

3、在所有master节点上操作

3.1 修改docker服务管理文件,配置docker连接flannel

3.2 重启docker服务

3.3 ifconfig #查看flannel网络

3.4 测试ping通对方docker0网卡 证明flannel起到路由作用

四、部署master组件

1、在master1 节点上操作

1.1 上传master.zip 和k8s-cert.sh 到/opt/k8s 目录中,解压master.zip 压缩包

1.2 创建kubernetes工作目录

1.3 创建用于生成CA证书、相关组件的证书和私钥的目录

2、生成CA证书、相关组件的证书和私钥

2.1 复制CA证书、apiserver 相关证书和私钥到kubernetes. 工作目录的ssl子目录中

2.2 上传kubernetes-server-linux-amd64.tar.gz 到/opt/k8s/ 目录中,解压kubernetes 压缩包

2.3 复制master组件的关键命令文件到kubernetes. 工作目录的bin子目录中

2.4 创建bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用RBAC给他授权

2.5 使用 head -c 16 /dev/urandom | od -An -t x | tr -d ' '可以随机生成序列号,并创建token.csv文件,也可以使用脚本创建

3、检查进程是否启动成功

3.1 k8s通过kube- apiserver这 个进程提供服务,该进程运行在单个master节点上。默认有两个端口6443和8080

3.2 查看版本信息(必须保证apiserver启动正常,不然无法查询到server的版本信息)

3.3 启动scheduler 服务

3.4 启动controller-manager服务

4、生成kubectl连接集群的证书

4.1 查看节点状态

五、部署node组件

1、部署node组件

1.1在master1 节点上操作,把kubelet、 kube-proxy拷贝到node 节点

1.2 上传node.zip到/opt 目录中,解压node.zip 压缩包,获得kubelet.sh、 proxy.sh

1.3 创建用于生成kubelet的配置文件的目录

1.4 上传kubeconfig.sh 文件到/opt/k8s/kubeconfig目录中

1.5 生成kubelet的配置文件

1.6 把配置文件bootstrap.kubeconfig、kube-proxy.kubeconfig拷贝到node节点

1.7 RBAC授权,将预设用户kubelet-bootatrap 与内置的ClusterRole system:node-bootatrapper 绑定到一起,使其能够发起CSR请求

1.8 查看角色

1.9 查看已授权的角色

1.10 使用kubelet.sh脚本启动kubelet服务

1.11 检查kubelet服务启动

1.12 此时还没有生成证书

1.13 在master1 节点上操作//检查到node1 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书

1.14 通过CSR请求

1.15 再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书

1.16 查看群集节点状态,成功加入node1节点

1.17 自动生成证书和kubelet.kubeconfig文件

1.18 加载ip_vs模块

1.19 使用proxy.sh脚本启动proxy服务 

1.20 在node1 节点上将kubelet.sh、 proxy.sh 文件拷贝到node2 节点

1.21 使用kubelet.sh脚本启动kubelet服务 

1.22 在master1 节点上操作,检查到node2 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书.

1.23 通过CSR请求

1.24 再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书

1.25 查看群集节点状态,成功加入node1节点

1.26 在node2 节点 加载ip_vs模块

1.27 使用proxy.sh脚本启动proxy服务

1.28 测试连通性


一、环境准备

k8s集群master1:192.168.2.66 kube-apiserver kube-controller-manager kube-scheduler etcd

k8s集群node1: 192.168.2.200 kubelet kube-proxy docker flannel

k8s集群node2: 192.168.2.77 kubelet kube-proxy docker flannel

至少2C2G

1、常见的k8s部署方式

Mini kube

Minikube是一个工具,可以在本地快速运行一个单节点微型K8s,仅用于学习预览K8s的一些特性使用
部署地址: https: / /kubernetes.io/docs/setup/minikube

Kubeadmin

Kubeadmin也是一个工具,提供kubeadm init和kubeadm join,用于快速部署K8S集群,相对简单
https: / /kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

二进制安装部署

生产首选,从官方下载发行版的二进制包,手动部署每个组件和自签TLS证书,组成K8s集群,新手推荐
https: / /github.com/kubernetes/kubernetes/releases

小结:kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查,如果想更容易可控,推荐使用二进制包部署kubernetes集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护。

2、关闭防火墙

systemctl stop firewalld
systemctl disable firewalld

3、关闭selinux

setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

4、关闭swap

swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab

5、根据规划设置主机名

hostnamectl  set-hostname master01
hostnamectl  set-hostname node01
hostnamectl  set-hostname node02

6、在master添加hosts

cat >>  /etc/hosts <<EOF
192.168.2.66 master01
192.168.2.200 node01
192.168.2.77 node02
EOF

7、将桥接的IPv4流量传递到iptables的链

cat > /etc/sysctl.d/k8s.conf <<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-ip6tables = 1
EOF
sysctl --system

8、时间同步

yum -y install ntpdate
ntpdate time.windows.com

二、部署etcd集群

etcd作为服务发现系统,有以下的特点:

• 简单、安装配置简单,而且提供了HTTP API进行交互,使用也很简单

• 安全: 支持SSL证书验证

• 快速: 单实例支持每秒2k+读操作

• 可靠: 采用raft算法实现分布式系统数据的可用性和一致性

准备签发证书环境:

CFSSL是CloudFlare 公司开源的一款PKI/TLS工具。CESSL 包含一个命令行工具和一个用于签名、验证和捆绑TLS证书的HTTP API服务。使用Go语言编写。

CFSSL使用配置文件生成证书,因此自签之前,需要生成它识别的json 格式的配置文件,CFSSL 提供了方便的命令行生成配置文件。

CFSSL用来为etcd提供TLS证书,它支持签三种类型的证书:

1、client证书,服务端连接客户端时携带的证书,用于客户端验证服务端身份,如kube-apiserver 访问etcd;

2、server证书,客户端连接服务端时携带的证书,用于服务端验证客户端身份,如etcd对外提供服务:

3、peer证书,相互之间连接时使用的证书,如etcd节点之间进行验证和通信。

这里全部都使用同一套证书认证。

注:etcd这里就不做集群了,直接部署在master节点上

1、master节点部署

下载证书制作工具

curl -L https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -o /usr/local/bin/cfssl
curl -L https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -o /usr/local/bin/cfssljson
curl -L https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -o /usr/local/bin/cfssl-certinfo
或者
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo 
chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson /usr/local/bin/cfssl-certinfo chmod +x /usr/local/bin/cfssl 

-----------------------------------------------------

cfssl: 证书签发的工具命令

cfssljson: 将cfssl 生成的证书( json格式)变为文件承载式证书

cfssl-certinfo:验证证书的信息

cfssl-certinfo -cert <证书名称>

2、查看证书的信息

2.1 创建k8s工作目录

mkdir /opt/k8s
cd /opt/k8s/

2.2 上传etcd-cert.sh 和etcd.sh 到/opt/k8s/ 目录中

chmod +x etcd-cert.sh etcd. sh

2.3 创建用于生成CA证书、etcd服务器证书以及私钥的目录

mkdir /opt/k8s/etcd-cert
 
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh

2.4 生成CA证书、etcd服务器证书以及私钥

2.5 上传etcd-v3.3.10-1inux-amd64.tar.gz 到/opt/k8s/ 目录中,解压etcd 压缩包

cd /opt/k8s/
tar zxvf etcd-v3.3.10-linux-amd64.tar.gz
1s etcd-v3.3.10-linux-amd64
Documentation etcd etcdctl README-etcdctl.md README.md
READMEv2-etcdctl.md

==========================
etcd就是etcd服务的启动命令,后面可跟各种启动参数

3、etcdctl主要为etcd服务提供了命令行操作

3.1 创建用于存放etcd配置文件,命令文件,证书的目录

mkdir -p /opt/etcd/{cfg,bin,ssl}
mv /opt/k8s/etcd-v3.3.10-linux- amd64/etcd /opt/k8s/etcd-v3.3.10-1inux-amd64/etcdct1 /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/
./etcd.sh etcd01 192.168.2.66 etcd02=https://192.168.2.200:2380,etcd03=https://192.168.2.77:2380

3.2 进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况

3.3 另外打开一个窗口查看etcd进程是否正常

ps -ef | grep etcd  

3.4 把etcd相关证书文件和命令文件全部拷贝到另外两个etcd集群节点

scp -r /opt/etcd/ root@192.168.2.200:/opt/
scp -r /opt/etcd/ root@192.168.2.77:/opt/

3.5 把etcd服务管理文件拷贝到另外两个etcd集群节点

scp /usr/lib/systemd/system/etcd.service root@192.168.2.200:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.2.77:/usr/lib/systemd/system/

4、在node1与node2节点修改

4.1 在node1节点修改

cd /opt/etcd/cfg/
vim etcd
#[Member]
ETCD_NAME="etcd02"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.2.200:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.2.200:2379"
 
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.2.200:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.2.200:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.2.66:2380,etcd02=https://192.168.2.200:2380,etcd03=https://192.168.2.77:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
systemctl daemon-reload
systemctl enable --now etcd.service

4.2 在node2节点修改

cd /opt/etcd/cfg/
vim etcd
#[Member]
ETCD_NAME="etcd03"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.2.77:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.2.77:2379"
 
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.2.77:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.2.77:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.2.66:2380,etcd02=https://192.168.2.200:2380,etcd03=https://192.168.2.77:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
systemctl daemon-reload
systemctl enable --now etcd.service

5、在master1节点上进行启动

5.1 首先在master1节点上进行启动

cd /root/k8s/
./ etc.sh etcd01 192.168.2.66:2380 etcd02 192.168.2.200:2380 etcd03 192.168.2.77:2380

5.2 接着在node1和node2节点分别进行启动

systemctl start etcd.service

5.3 在master1 节点上操作

1n -s /opt/etcd/bin/etcd* /usr/1oca1/bin

5.4 检查etcd群集状态

cd /opt/etcd/ss1
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.2.66:2379,https://192.168.2.200:2379,https://192.168.2.77:2379" endpoint health --write-out=table

-----------------------------------------------
--cert-file:识别HTTPS端使用sSL证书文件
--key-file: 使用此SSL密钥文件标识HTTPS客户端
-ca-file:使用此CA证书验证启用https的服务器的证书
--endpoints:集群中以逗号分隔的机器地址列表
cluster-health:检查etcd集群的运行状况
-----------------------------------------------

ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.2.66:2379,https://192.168.2.200:2379,https://192.168.2.77:2379" --write-out=table member list

6、部署docker引擎

6.1 所有node节点部署docker引擎

yum install -y yum-utils device-mapper-persistent-data 1vm2
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum install -y docker-ce dqsker-ce-cli containerd.io
 
systemctl start docker.service
systemctl enable docker.service

三、flannel网络配置

1、flannel网络配置

K8S中Pod网络通信:

●Pod内容器与容器之间的通信

在同一个Pod内的容器(Pod内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在网一台机器上一样,可以用localhost地址访间彼此的端口

●同一个Node内Pod之间的通信

每个Pod 都有一个真实的全局IP地址,同一个Node 内的不同Pod之间可以直接采用对方Pod的IP 地址进行通信,Pod1 与Pod2都是通过veth连接到同一个docker0 网桥,网段相同,所以它们之间可以直接通信

●不同Node上Pod之间的通信

Pod地址与docker0 在同一网段,dockor0 网段与宿主机网卡是两个不同的网段,且不同Nodo之间的通信贝能通过宿主机的物理网卡进行

要想实现不同Node 上Pod之间的通信,就必须想办法通过主机的物理网卡IP地址进行寻址和通信。

因此要满足两个条件:

Pod 的IP不能冲突:

将Pod的IP和所在的Node的IP关联起来,通过这个关联让不同Node上Pod之间直接通过内网IP地址通信。

=Overlay Network:=

叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)

=VXLAN:=

将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址

=Flannel:=

Flannel的功能是让集群中的不同节点主机创建的Docker容器都具有全集群唯一的虚拟IP地址

Flannel是Overlay 网络的一种,也是将TCP 源数据包封装在另一种网络 包里而进行路由转发和通信,目前己经支持UDP、VXLAN、AwS VPC等数据转发方式

=ETCD之Flannel 提供说明:=

存储管理Flanne1可分配的IP地址段资源
监控ETCD中每个Pod 的实际地址,并在内存中建立维护Pod 节点路由表

Flannel工作原理:

node1上的pod1 要和node2上的pod1进行通信

1.数据从node1上的Pod1源容器中发出,经由所在主机的docker0 虚拟网卡转发到flannel0虚拟网卡;

2.再由flanneld把pod ip封装到udp中(里面封装的是源pod IP和目的pod IP);

3.根据在etcd保存的路由表信息,通过物理网卡发送给目的node2的flanneld,来进行解封装暴露出udp里的pod IP;

4.最后根据目的pod IP经flannel0虚拟网卡和docker0虚拟网卡转发到目的pod中,最后完成通信

2、在master1 节点 添加flannel 网络配置信息

2.1 在node01 节点上操作

#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/

mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

docker load -i flannel.tar
docker images
scp -r cni/ flannel.tar 192.168.2.200:/opt

3、在所有master节点上操作

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-system

kubectl get nodes

3.1 修改docker服务管理文件,配置docker连接flannel

vim /lib/systemd/system/docker.service
[Service]
Type=notify
# the default is not to use systemd for cgroups because the delegate issues stillt
# exists and systemd currently dges not support the cgroup feature set requi red
# for containers run by docker
EnvironmentFile=/run/flannel/subnet.env
#添加
ExecStart=/usr/bin/dockerd $DOCKER_NETWORK_OPTIONS -H fd:// --containerd=/run/containerd/containerd.sock
#修改
ExecReload=/bin/kill -s HUP $MAINPID
TimeoutSec=0
RestartSec=2
Restart=always

3.2 重启docker服务

systemctl daemon-reload
systemctl restart docker

3.3 ifconfig #查看flannel网络

3.4 测试ping通对方docker0网卡 证明flannel起到路由作用

ping 172.17.21.1
 
docker run -it centos:7 /bin/bash #node1和node2都运行该命令
 
yum install net-tools -y #node1和node2都运行该命令
 
ifconfig //再次测试ping通两个node中的centos:7容器

四、部署master组件

1、在master1 节点上操作

1.1 上传master.zip 和k8s-cert.sh 到/opt/k8s 目录中,解压master.zip 压缩包

cd /opt/k8s/
unzip master.zip
apiserver.sh
scheduler.sh
controller-manager.sh
 
chmod +x * .sh

1.2 创建kubernetes工作目录

mkdir -p /opt/kubernetes/{cfg,bin,ssl}

1.3 创建用于生成CA证书、相关组件的证书和私钥的目录

mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh

2、生成CA证书、相关组件的证书和私钥

//controller-manager和kube-scheduler设置为只调用当前机器的apiserver, 使用127.0.0.1:8080 通信,因此不需要签发证书

2.1 复制CA证书、apiserver 相关证书和私钥到kubernetes. 工作目录的ssl子目录中

cp ca*pem apiserver*pem /opt/kubernetes/ssl/

2.2 上传kubernetes-server-linux-amd64.tar.gz 到/opt/k8s/ 目录中,解压kubernetes 压缩包

cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz

2.3 复制master组件的关键命令文件到kubernetes. 工作目录的bin子目录中

cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
1n -s /opt/kubernetes/bin/* /usr/local/bin/

2.4 创建bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用RBAC给他授权

cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -e 16 /dev/urandom | od -An -t x | tr -d ‘ ’)
#生成token.csv 文件,按照Token序列号,用户名,UID,用户组的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF
chmod +x token.sh
./token.sh
 
./apiserver.sh 192.168.2.66 https://192.168.2.66:2379,https://192.168.2.200:2379,https://192.168.2.77:2379

2.5 使用 head -c 16 /dev/urandom | od -An -t x | tr -d ' '可以随机生成序列号,并创建token.csv文件,也可以使用脚本创建

二进制文件,token,证书都准备好,开启apiserver

3、检查进程是否启动成功

ps aux | grep kube-apiserver

3.1 k8s通过kube- apiserver这 个进程提供服务,该进程运行在单个master节点上。默认有两个端口6443和8080

//安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证

//本地端口8080用于接收HTTP请求,非认证或授权的HTTP请求通过该端口访问APIServer

netstat -natp| grep 8080
netstat -natp | grep 6443

3.2 查看版本信息(必须保证apiserver启动正常,不然无法查询到server的版本信息)

kubectl version

3.3 启动scheduler 服务

cd /opt/k8s/
./scheduler.sh 127.0.0.1
 
ps aux | grep kube-scheduler

3.4 启动controller-manager服务

cd /opt/k8s/
./controller-manager.sh 127.0.0.1

4、生成kubectl连接集群的证书

./admin.sh

kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

4.1 查看节点状态

kubectl get cs

五、部署node组件

1、部署node组件

1.1在master1 节点上操作,把kubelet、 kube-proxy拷贝到node 节点

cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.229.80:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.229.70:/opt/kubernetes/bin/

在node1 节点上操作

1.2 上传node.zip到/opt 目录中,解压node.zip 压缩包,获得kubelet.sh、 proxy.sh

cd /opt/
unzip node.zip

在master1节点上操作

1.3 创建用于生成kubelet的配置文件的目录

mkdir /opt/k8s/kubeconfig

1.4 上传kubeconfig.sh 文件到/opt/k8s/kubeconfig目录中

#kubeconfig.sh文件包含集群参数(CA 证书、API Server 地址),客户端参数(上面生成的证书和私钥),集群context
上下文参数(集群名称、用户名)。Kubenetes 组件(如kubelet、 kube-proxy) 通过启动时指定不同的kubeconfig文件可以切换到不同的集群,连接到apiserver

cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh

1.5 生成kubelet的配置文件

cd /opt/k8a/kubeconfig
./kubeconfig.sh 192.168.2.66 /opt/k8s/k8s-cert/
 
1s
bootstrap.kubeconfig kubeconfig.sh kube-proxy.kubeconfig

1.6 把配置文件bootstrap.kubeconfig、kube-proxy.kubeconfig拷贝到node节点

cd /opt/k8s/kubeconfig
scp bootstrap.kubeconfig kube-proxy-kubeconfig root@192.168.2.200:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.2.77:/opt/kubernetes/cfg/

1.7 RBAC授权,将预设用户kubelet-bootatrap 与内置的ClusterRole system:node-bootatrapper 绑定到一起,使其能够发起CSR请求

kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

kubelet采用TLS Bootstrapping 机制,自动完成到kube -apiserver的注册,在node节点量较大或者后期自动扩容时非常有用。
Master apiserver 启用TLS 认证后,node 节点kubelet 组件想要加入集群,必须使用CA签发的有效证书才能与apiserver 通信,当node节点很多时,签署证书是一件很繁琐的事情。因此Kubernetes 引入了TLS bootstraping 机制来自动颁发客户端证书,kubelet会以一个低权限用户自动向apiserver 申请证书,kubelet 的证书由apiserver 动态签署。

kubelet首次启动通过加载bootstrap.kubeconfig中的用户Token 和apiserver CA证书发起首次CSR请求,这个Token被预先内置在apiserver 节点的token.csv 中,其身份为kubelet-bootstrap 用户和system: kubelet- bootstrap用户组:想要首次CSR请求能成功(即不会被apiserver 401拒绝),则需要先创建一个ClusterRoleBinding, 将kubelet-bootstrap 用户和system:node - bootstrapper内置ClusterRole 绑定(通过kubectl get clusterroles 可查询),使其能够发起CSR认证请求。

TLS bootstrapping 时的证书实际是由kube-controller-manager组件来签署的,也就是说证书有效期是kube-controller-manager组件控制的; kube-controller-manager 组件提供了一个--experimental-cluster-signing-duration
参数来设置签署的证书有效时间:默认为8760h0m0s, 将其改为87600h0m0s, 即10年后再进行TLS bootstrapping 签署证书即可。

也就是说kubelet 首次访问API Server 时,是使用token 做认证,通过后,Controller Manager 会为kubelet生成一个证书,以后的访问都是用证书做认证了。
------------------------------------------

1.8 查看角色

kubectl get clusterroles | grep system:node-bootstrapper

1.9 查看已授权的角色

kubectl get clusterrolebinding

在node1节点上操作

1.10 使用kubelet.sh脚本启动kubelet服务

cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.2.200

1.11 检查kubelet服务启动

ps aux | grep kubelet

1.12 此时还没有生成证书

ls /opt/kubernetes/ssl/

1.13 在master1 节点上操作
//检查到node1 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书

kubectl get csr

1.14 通过CSR请求

kubectl certificate approve node-csr-12DGPu__kpLSBsGUHpvGs6Q89B9aYysw9C61pAagDEA 

1.15 再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书

kubectl get csr

1.16 查看群集节点状态,成功加入node1节点

kubectl get nodes

在node1节点上操作

1.17 自动生成证书和kubelet.kubeconfig文件

ls /opt/kubernetes/cfg/kubelet.kubeconfig
ls /opt/kubernetes/ssl/

1.18 加载ip_vs模块

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F
filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

1.19 使用proxy.sh脚本启动proxy服务 

cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.2.200
 
systemctl status kube-proxy.service

node2 节点部署
##方法一 :
1.20 在node1 节点上将kubelet.sh、 proxy.sh 文件拷贝到node2 节点

cd /opt/
scp kubelet.sh proxy.sh root@192.168.2.77:/opt/

1.21 使用kubelet.sh脚本启动kubelet服务 

cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.2.77

1.22 在master1 节点上操作,检查到node2 节点的kubelet 发起的CSR请求,Pending 表示等待集群给该节点签发证书.

kubectl get csr

1.23 通过CSR请求

kubectl certificate approve node-csr-NOI-9vufTLIqJgMWq4fHPNPHKbjCX1DGHptj7FqTa8A

1.24 再次查看CSR请求状态,Approved, Issued表示已授权CSR请求并签发证书

kubectl get csr

1.25 查看群集节点状态,成功加入node1节点

kubectl get nodes

1.26 在node2 节点 加载ip_vs模块

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

 1.27 使用proxy.sh脚本启动proxy服务

cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.2.77
 
systemctl status kube-proxy.service

1.28 测试连通性

kubectl create deployment nginx-test --image=nginx:1.14
kubectl get pod
kubectl get pod
kubectl describe pod nginx-test-7dc4f9dcc9-vlzmk

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/360009.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用useReducer + useContext 代替 react-redux

一. 概述 在 React16.8推出之前&#xff0c;我们使用react-redux并配合一些中间件&#xff0c;来对一些大型项目进行状态管理&#xff0c;React16.8推出后&#xff0c;我们普遍使用函数组件来构建我们的项目&#xff0c;React提供了两种Hook来为函数组件提供状态支持&#xff…

ccc-pytorch-基础操作(2)

文章目录1.类型判断isinstance2.Dimension实例3.Tensor常用操作4.索引和切片5.Tensor维度变换6.Broadcast自动扩展7.合并与分割8.基本运算9.统计属性10.高阶OP大伙都这么聪明&#xff0c;注释就只写最关键的咯1.类型判断isinstance 常见类型如下&#xff1a; a torch.randn(…

iOS开发:对苹果APNs远程推送原理的理解

本篇是对APNs推送原理的一个理解,希望看完后,能让你掌握一个知识点。 APNs是Apple Push Notification Service的缩写,也就是苹果的推送服务器。 远程通知的传递涉及几个关键组件: 您公司的服务器或第三方服务商,称为提供商服务器Apple 推送通知服务 (APNs)用户的设备您的…

Netty进阶实现自定义Rpc

项目地址&#xff1a;xz125/Rpc-msf (github.com)1 项目架构&#xff1a;RPC 框架包含三个最重要的组件&#xff0c;分别是客户端、服务端和注册中心。在一次 RPC 调用流程中&#xff0c;这三个组件是这样交互的&#xff1a;服务端(provider)在启动后会将它提供的服务列表和地址…

RocketMQ 第一章

RocketMQ 第一章 1、什么是MQ Message Queue&#xff08;消息队列&#xff09;&#xff0c;从字⾯上理解&#xff1a;⾸先它是⼀个队列。FIFO 先进先出的数据结构 —— 队列。消息队列就是所谓的存放消息的队列。 消息队列解决的不是存放消息的队列的⽬的&#xff0c;而是解…

AcWing1015.摘花生

AcWing 1015. 摘花生Hello Kitty想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图)&#xff0c;从西北角进去&#xff0c;东南角出来。地里每个道路的交叉点上都有种着一株花生苗&#xff0c;上面有若干颗花生&#xff0c;经过一株花生苗就能摘走该它…

《FPGA学习》->蜂鸣器播放

&#x1f34e;与其担心未来&#xff0c;不如现在好好努力。在这条路上&#xff0c;只有奋斗才能给你安全感。你若努力&#xff0c;全世界都会为你让路。蜂鸣器的发声原理由振动装置和谐振装置组成&#xff0c;而蜂鸣器又分为无源他激型与有源自激型。本实验采用无源蜂鸣器&…

嵌入物理(PINN)还是基于物理(AD)?

文章目录1. 传统"反演问题"1.1 反演问题是什么1.2 常见反演问题1.3 传统反演问题的困境2. 深度学习优势3. AD inversion 例子3.1 ADsurf3.2 ADseismic关于PINN的内容大家可以直接google PINN (Physical-informed neural network),其主要的目的是用一个神经网络拟合物…

K8S 部署 Jenkins

本文使用 bitnami 镜像部署 Jenkins 官方文档&#xff1a;https://github.com/bitnami/charts/tree/main/bitnami/jenkins 添加 bitnami 仓库 helm repo add bitnami https://charts.bitnami.com/bitnami自定义 values.yaml storageClass&#xff1a;集群的存储类&#xff…

(考研湖科大教书匠计算机网络)第五章传输层-第八节1:TCP连接管理理论部分(三次握手与四次挥手)

获取pdf&#xff1a;密码7281专栏目录首页&#xff1a;【专栏必读】考研湖科大教书匠计算机网络笔记导航此部分内容借鉴博主【小林coding】 &#xff0c;其对计算机网络内容的图解可以说是深入浅出&#xff0c;尤其是三次握手和四次挥手这一部分&#xff0c;堪称全网最佳。所这…

OpenEuler安装软件方法

在树莓派上烧录好OpenEuler后上面是什么软件都没有的&#xff0c;像一些gcc的环境都需要自己进行配置。官方提供的安装命令是yum&#xff0c;但是执行yum是找不到命令的&#xff1a;   这个其实是因为OpenEuler中默认的安装软件使用了dnf而不是yum&#xff0c;所以软件的安装…

智能小车红外跟随原理

红外跟随电路红外跟随电路由电位器R17&#xff0c;R28&#xff1b;发光二极管D8&#xff0c;D9&#xff1b;红外发射管 D2&#xff0c;D4和红外接收管D3&#xff0c;D5和芯片LM324等组成,LM234用于信号的比较&#xff0c;并产生比较结果输出给单片机进行处理。智能小车红外跟随…

OpenGL学习日志之纹理

引言 为了使我们渲染的模型拥有更多细节&#xff0c;我们可以添加足够多的顶点&#xff0c;然后给每一个顶点都添加顶点颜色。但是这样就会产生很多额外的开销&#xff0c;因此就出现了纹理映射技术&#xff0c;我们通过纹理采样为物体的表面添加更多的细节。 纹理定义 通俗…

超25亿全球月活,字节依然没有流量

&#xff08;图片来源于网络&#xff0c;侵删&#xff09; 文|螳螂观察 作者| 搁浅虎鲸 注意看&#xff0c;这个男人叫梁汝波&#xff0c;是字节跳动的联合创始人&#xff0c;也是接棒张一鸣的新任CEO。 在字节跳动十周年之际&#xff0c;他发表了激情昂扬的演讲。“激发创…

【Datawhale图机器学习】图嵌入表示学习

图嵌入表示学习 学习视频&#xff1a;https://www.bilibili.com/video/BV1AP4y1r7Pz/ 如何把节点映射成D维向量&#xff1f; 人工特征工程&#xff1a;节点重要度、集群系数、Graphlet图表示学习&#xff1a;通过随机游走构造自监督学习任务。DeepWalk、Node2Vec矩阵分解深度…

win10字体模糊怎么办?看下面4种宝藏解决方法

最近很多用户反映电脑安装了Win10系统后出现字体发虚&#xff0c;模糊不清的问题&#xff0c;这看起来让人非常难受。win10字体模糊怎么办&#xff1f;来看下面4种宝藏解决方法&#xff01;下面的方法适用于各类台式电脑以及笔记本电脑哦&#xff01; 操作环境&#xff1a; 演示…

ESP开发环境搭建

一、windows中搭建 esp-idf tool(可选),下载连接如下:https://dl.espressif.com/dl/esp-idf/?idf4.4 下载安装tools后进入vscode进行插件安装&#xff08;未离线下载idf工具也可以通过第二步通过插件下载安装&#xff09; 1. vscode安装编译环境 ESP-IDF 需要安装一些必备工…

高并发系统设计之负载均衡

本文已收录至Github&#xff0c;推荐阅读 &#x1f449; Java随想录 文章目录DNS负载均衡Nginx负载均衡负载均衡算法负载均衡配置超时配置被动健康检查与主动健康检查LVS/F5Nginx当我们的应用单实例不能支撑用户请求时&#xff0c;此时就需要扩容&#xff0c;从一台服务器扩容到…

【matplotlib】可视化解决方案——如何设置轴标签的透明度和大小

概述 Axes 标签对于读者理解图表非常重要&#xff0c;它描述了图表中展现的数据内容。通过向 axes 对象添加标签&#xff0c;可以有效理解图表所表达的内容。首先来了解一下 matplotlib 是如何组织图表的。最上层是一个 Figure 实例&#xff0c;包含绘图中所有可见和不可见的内…

北斗导航 | 2023 PTTI会议论文 2023 ITM会议论文 2022 ION GNSS+ 会议论文下载:ION 美国导航学会

===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 2023 PTTI会议论文 2023 ITM会议论文 2022 ION GNSS+ 论文下载百度云链…