力扣链接
力扣
题目描述:
我们正在玩一个猜数游戏,游戏规则如下:
- 我从
1
到n
之间选择一个数字。 - 你来猜我选了哪个数字。
- 如果你猜到正确的数字,就会 赢得游戏 。
- 如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
- 每当你猜了数字
x
并且猜错了的时候,你需要支付金额为x
的现金。如果你花光了钱,就会 输掉游戏 。
给你一个特定的数字 n
,返回能够 确保你获胜 的最小现金数,不管我选择那个数字 。
输入:n = 10 输出:16 解释:制胜策略如下: - 数字范围是 [1,10] 。你先猜测数字为 7 。 - 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $7 。 - 如果我的数字更大,则下一步需要猜测的数字范围是 [8,10] 。你可以猜测数字为 9 。 - 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $9 。 - 如果我的数字更大,那么这个数字一定是 10 。你猜测数字为 10 并赢得游戏,总费用为 $7 + $9 = $16 。 - 如果我的数字更小,那么这个数字一定是 8 。你猜测数字为 8 并赢得游戏,总费用为 $7 + $9 = $16 。 - 如果我的数字更小,则下一步需要猜测的数字范围是 [1,6] 。你可以猜测数字为 3 。 - 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $3 。 - 如果我的数字更大,则下一步需要猜测的数字范围是 [4,6] 。你可以猜测数字为 5 。 - 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $5 。 - 如果我的数字更大,那么这个数字一定是 6 。你猜测数字为 6 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。 - 如果我的数字更小,那么这个数字一定是 4 。你猜测数字为 4 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。 - 如果我的数字更小,则下一步需要猜测的数字范围是 [1,2] 。你可以猜测数字为 1 。 - 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $1 。 - 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $7 + $3 + $1 = $11 。 在最糟糕的情况下,你需要支付 $16 。因此,你只需要 $16 就可以确保自己赢得游戏。
解法:
1.记忆化递归:
简单地思路梳理:
我们可以枚举1到n中的每一个数字,记为x,那么分为两种情况,猜中了和没猜中
- 假如 x 正好是选中的数,那么,付出的代价为 0;
- 假如 x 不是选中的数,那么,付出的代价为 x,然后,我们会得到提示,选中的数比 x 大还是比 x 小:
- 假如比 x 小,我们只要求得 1 到 x-1 的最小代价,再加上 x 就能得到猜 x 时的最小代价;
- 假如比 x 大,我们只要求得 x+1 到 n 的最小代价,再加上 x 就能得到猜 x 时的最小代价;
- 而选中的数有可能在 x 的左边,也可能在 x 的右边,为了保证我们能够赢得游戏,我们需要备用的现金应该是左右两边的最小代价的最大值再加上 x 本身。
当我们枚举完这些 x 后,取其中的最小值就是我们需要备用的现金。
所以,我们可以得到递推公式:
你会发现存在很多重复的计算,比如,计算 f(1)(4) 的时候会计算 f(1)(2) 和 f(1)(3),而计算 f(1)(3) 的时候也会计算 f(1)(2),所以,我们可以加上缓存记录已经计算过的数值,这就是记忆化搜索
class Solution {
public int getMoneyAmount(int n) {
int[][] memo = new int[n + 2][n + 2];
return dfs(1, n, memo);
}
private int dfs(int start, int end, int[][] memo) {
if (start >= end) {
return 0;
}
if (memo[start][end] != 0) {
return memo[start][end];
}
int ans = Integer.MAX_VALUE;
for (int k = start; k <= end; k++) {
ans = Math.min(ans, Math.max(dfs(start, k - 1, memo), dfs(k + 1, end, memo)) + k);
}
return memo[start][end] = ans;
}
}
2.动规(区间DP):
再上一步的记忆化递归中,我们发现,每次计算区间[x,y]都依赖与更小的区间,那么调整区间的计算顺序,我们不妨先计算小的区间,这样在计算大的区间的时候就不必重新计算小的区间了。
- 状态定义:dp[i][j]表示选中的数在 [i,j] 之间时能够确保获胜需要备用的现金数;
- 状态转移:dp[i][j]=min{k=i->j}(max(dp[i][k-1], dp[i][k+1]) + k);
- 初始值:对于只有一个数时,选中的数肯定就是这个数,代价为0,所以,初始值为 dp[i][i] = 0,Java中不需要特殊处理;
- 返回值:dp[1][n];
典型的区间dp的写法:
枚举长度从小到大:
class Solution {
public int getMoneyAmount(int n) {
// dp[i][j]表示选择的数在[i,j]之间时能够确保获胜的最小钱数
// dp[i][j]=min{k=i->j}(max(dp[i][k-1], dp[i][k+1]) + k)
int[][] dp = new int[n + 2][n + 2];
for (int len = 2; len <= n; len++) {
//长度从小到大枚举
for (int i = 1; i <= n - len + 1; i++) {
//从小到大,也就是举例 [1,1+len] [2,2+len]这样
int j = i + len - 1;
int min = Integer.MAX_VALUE;
for (int k = i; k <= j; k++) {
//注意k在后面的整体之中,为什么加k,因为是没选中k,所以要付出代价为k
//然后比较原来的数据和当前没选中需要花费的最大的代价,取最大代价中最小的
min = Math.min(min, Math.max(dp[i][k - 1], dp[k + 1][j]) + k);
}
dp[i][j] = min;
}
}
return dp[1][n];
}
}
代码说明:
注意,for循环中的len是我们枚举的长度,不是整个数字n的长度。