【机器学习】Adaboost

news2025/1/21 21:52:33

1.什么是Adaboost

        AdaBoost(adapt boost),自适应推进算法,属于Boosting方法的学习机制。是一种通过改变训练样本权重来学习多个弱分类器并进行线性结合的过程。它的自适应在于:被前一个基本分类器误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或预先指定的最大迭代次数再确定最后的强分类器。Adaboost主要解决的问题有: 两类问题、多类单标签问题、多类多标签问题、回归问题。

2.Adaboost算法流程

2-1 权值初始化

        初始化训练数据的权值分布D1。假设有N个训练样本数据,则每一个训练样本最开始时,都会被赋予相同的权值:w1 = 1/N。

2-2 训练弱分类器

         训练弱分类器Ci。训练过程中提高被弱分类器错分样本的权值,降低正分样本的权值,作为下一轮基本分类器的训练样本。这样一来,那些没有得到正确分类的数据,由于其价值加大后收到后一轮弱分类器的更大关注,于是,分类问题被一系列弱分类器"分而治之"。具体训练过程:如果某个训练样本点,被弱分类器Ci准确地分类,那么再构造下一个训练集中,它对应的权值要减小;相反,如果某个训练样本点被错误分类,那么它的权值就应该增大。权值的更新过的样本被用于训练下一个弱分类器,整个过程如此迭代下去。​​​​​​​​​​​​​​

        第一个分类器将三个蓝色样本错误分类到红色样本区域,所以将蓝色样本的权值增大,作为第二个分类器的训练数据。

         第二个分类器将两个蓝色样本错误分类到红色样本区域同时也将一个红色样本错误分类到蓝色样本区域,所以对应的蓝色样本和红色样本的权值增大,作为第三个分类器的训练数据。 

        第三个分类器将经过前两个分类器后进行权值调整的数据再次训练,并进行划分。

2-3 集成组合        

        将各个训练得到的弱分类器组合成一个强分类器。采取加权多数表决的方法,误差率小的分类器的权值大,使其在表决过程中起较大作用。        

        各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。误差率低的弱分类器在最终分类器中占的权重较大,误差率高的弱分类器在最终分类器中占的权重较小。 

3.Adaboost公式推导

3-1 Adaboost 公式

3-1 推导 

4.Adaboost的优点和缺点

4-1 优点

(1)Adaboost提供一种框架,在框架内可以使用各种方法构建子分类器。可以使用简单的弱分类器,不用对特征进行筛选,也不存在过拟合的现象。

(2)Adaboost算法不需要弱分类器的先验知识,最后得到的强分类器的分类精度依赖于所有弱分类器。无论是应用于人造数据还是真实数据,Adaboost都能显著的提高学习精度。

(3)Adaboost算法不需要预先知道弱分类器的错误率上限,且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,可以深挖分类器的能力。Adaboost可以根据弱分类器的反馈,自适应地调整假定的错误率,执行的效率高。

(4)Adaboost对同一个训练样本集训练不同的弱分类器,按照一定的方法把这些弱分类器集合起来,构造一个分类能力很强的强分类器,即“三个臭皮匠赛过一个诸葛亮”。

4-2 缺点

        在Adaboost训练过程中,Adaboost会使得难于分类样本的权值呈指数增长,训练将会过于偏向这类困难的样本,导致Adaboost算法易受噪声干扰。此外,Adaboost依赖于弱分类器,而弱分类器的训练时间往往很长。        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/358468.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二叉树最大深度、最小深度、以及n叉树的最大深度

1.N 叉树的最大深度 给定一个 N 叉树,找到其最大深度。 最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。 N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔(请参见示例)。 示例 1: 输入&#xff…

多因子模型(MFM)

多因子模型(Muiti-Factor M: MFM)因子投资基础CAPM (资本资产定价模型)APT套利定价理论截面数据 & 时间序列数据 & 面板数据定价误差 α\alphaαalpha 出现的原因线性多因子模型Fama-French三因子模型三因子的计算公式利用alpha大小进行购买股票…

centos误删python2后怎么重新安装

此教程为离线安装 一. 先查询系统版本 cat /proc/version Linux version 3.10.0-1127.el7.x86_64 (mockbuildkbuilder.bsys.centos.org) (gcc version 4.8.5 20150623 (Red Hat 4.8.5-39) (GCC) ) #1 SMP Tue Mar 31 23:36:51 UTC 2020 二. 安装python2.7.5(已知原python版…

【C++修炼之路】19.AVL树

每一个不曾起舞的日子都是对生命的辜负 AVL树前言:一.AVL树的概念二.AVL树的结构2.1 AVL树节点的定义2.2 AVL树的结构2.3 AVL树的插入2.4 AVL树的验证2.5 AVL树的删除(了解)三.AVL树的旋转(重要)3.1 左单旋3.2 右单旋3.3 左右双旋3.4 右左双旋…

2023年 ChatGPT 研究报告

第一章 行业概况 ChatGPT是由OpenAI 团队研发创造,OpenAI是由创业家埃隆马斯克、美国创业孵化器Y Combinator总裁阿尔特曼、全球在线支付平台PayPal联合创始人彼得蒂尔等人于2015年在旧金山创立的一家非盈利的AI研究公司,拥有多位硅谷重量级人物的资金支…

最简单得方法解决TCP分包粘包问题

如何用最简单的方法解决TCP传输中的分包粘包问题? 首先需要说明一点,分包粘包等等一系列的问题并不是协议本身存在的问题,而是程序员在写代码的时候,没有搞清楚数据的边界导致的。 看个简单的例子,TCP客户端不断的向服…

SAP 解析固定资产的减值功能

SAP固定资产的减值功能 若固定资产出现减值迹象,也就是固定资产的可收回金额小于账面价值时,就要计提固定资产减值准备。 分录: 借:资产减值损失(损益科目) 贷:固定资产减值准备(资…

骨传导耳机是不是智商税?骨传导耳机真的不伤耳吗?

很多人对骨传导耳机是具有一定的了解,但是对骨传导耳机还是有一定的刻板印象,那么骨传导耳机到底是不是智商税呢?主要还是要从骨传导耳机传声原理上讨论。 骨传导耳机是属于固体传声的一种方式,通过骨骼传递声音,在使用…

一种基于强化学习的自动变道机动方法

文章目录摘要前言相关的工作方法论动作空间奖励函数设计Q学习仿真结果结论摘要 变道是一项至关重要的车辆操作,需要与周围车辆协调。建立在基于规则的模型上的自动换道功能可能在预定义的操作条件下表现良好,但在遇到意外情况时可能容易失败。在我们的研…

谈一谈正向代理和反向代理?

谈一谈正向代理和反向代理?什么是代理服务器(Proxy Serve)?为什么使用代理服务器?什么是正向代理什么是反向代理正向代理和反向代理的区别正向代理的应用反向代理的应用什么是代理服务器(Proxy Serve&#…

android kotlin 协程(四) 协程间的通信

android kotlin 协程(四) 协程间的通信 学完本篇你将会了解到: channelproduceactorselect 先来通过上一篇的简单案例回顾一下挂起于恢复: fun main() {val waitTime measureTimeMillis {runBlocking<Unit> {println("main start") // 1 // …

学会这些Jmeter插件,才能设计出复杂性能测试场景

为什么要使用jmeter线程组插件呢&#xff1f; jmeter自带的线程组插件模拟的压测场景非常有限&#xff0c;当需要模拟复杂压测场景的时候&#xff0c;推荐大家使用jmeter线程组插件。 如何下载jmeter线程组插件呢&#xff1f; 早期版本的jmeter可以针对我们需要的扩展功能&a…

软考案例分析题精选

试题一&#xff1a;阅读下列说明&#xff0c;回答问题1至问题4&#xff0c;将解答填入答题纸的对应栏内。某公司中标了一个软件开发项目&#xff0c;项目经理根据以往的经验估算了开发过程中各项任务需要的工期及预算成本&#xff0c;如下表所示&#xff1a;任务紧前任务工期PV…

大规模 IoT 边缘容器集群管理的几种架构-1-Rancher+K3s

前文回顾 大规模 IoT 边缘容器集群管理的几种架构-0-边缘容器及架构简介 &#x1f4da;️Reference: IoT 边缘计算系列文章 Rancher K3s 简介 Rancher&#xff1a; Kubernetes 统一管理平台&#xff0c; Rancher 是为采用容器的团队提供的一个完整的软件栈。它解决了管理多个…

PCI设备驱动初探(仅仅是内核部分,不是具体设备驱动)

在操作系统中&#xff0c;声卡、网卡之类的设备驱动并不像硬盘、鼠标、键盘等等驱动直接编写就行了。它们是建立在内核PCI驱动基础上的&#xff0c;也就是说这类设备通过PCI总线与系统通信。所以要编写这类的驱动首先要构造一个PCI设备的内核驱动&#xff0c;这样我们才能继续正…

Hive学习——DDLDML语句

目录 一、Hive数据类型 (一)Hive基本数据类型 (二)Hive的基本数据类型转换 (三)Hive集合数据类型 (四)文本文件数据编码 (五)读时模式 (六)Hive数据结构 二、DDL&DML命令 (一)数据库操作 1.创建数据库 2.查看数据库 3.修改数据库 4.删除数据库 5.切换(使用)指…

【LeetCode】No.225. 用队列实现栈 -- Java Version

题目链接&#xff1a;https://leetcode.cn/problems/implement-stack-using-queues/ 1. 题目介绍&#xff08;225. 用队列实现栈&#xff09; 请你仅使用两个队列实现一个后入先出&#xff08;LIFO&#xff09;的栈&#xff0c;并支持普通栈的全部四种操作&#xff08;push、t…

回文子串的数量[寻找回文子串的完整思路过程]

寻找回文子串的完整思路过程前言一、回文串的数量二、动态规划1、完整思考过程2、go总结参考文献前言 回文字符串&#xff0c;就是从左遍历和从右遍历的字符是相同顺序的&#xff0c;转换一下&#xff0c;就是该字符串是对称的。寻找回文子串面临两个直接的问题&#xff0c;1-…

pytorch深度学习案例(二)——航拍街道语义分割

数据集 使用的数据集是kaggle的Semantic segmentation of aerial imagery 其数据的组织形式为 项目结构 utils dataConvert.py dataConvert中主要包含数据的变换过程 函数作用loadColorMap用于加载标签的颜色映射voc_colormap2label获取颜色标签到数值标签的映射关系voc_…