大家好,小编来为大家解答以下问题,一个有趣的事情,一个有趣的事情,今天让我们一起来看看吧!
1、python基础知识有哪些需要背(记住是基础知识)我是初学者
或看好Python的广阔前景,或看中Python的语法简洁,越来越多零基础的人选择学Python。但是Python基础知识有哪些呢?Python部分基础知识点汇总
数据类型:编程中操作的每一个数据都是有其类型的,比如我们的程序需要进行数学计算,那么进行计算的参数和结果就都是数值,我们需要输入、输出一段话,那么这段话就是一个字符串。
变量和常量:变量有什么用?怎么使用?常量又是做什么的?
控制流语句:控制流语句让程序变得更加灵活,稍微复杂一些的程序都需要用到控制流语句中的判断和循环,那么如何在Python中高效应用控制流语句就显得非常重要。
函数:当程序开始复杂起来,某些功能可能需要多次使用的时候,我们就可以把这个功能封装成“函数”,函数就像是工具箱里一件件的工具,在需要的时候打开工具箱拿出即可使用。
数据结构:Python怎么处理数据?列表、元组、集合、字典分别有什么特性都需要详细了解。
异常处理:当你的程序开始复杂起来,可能会遇到某些不确定是否会出现错误的情况,这个时候怎样自定义异常、处理异常就十分重要。
注释:不写注释的程序员不是好程序员。
面向对象:面向对象是一种编程思想,可以让程序变得更可复用,同时逻辑更清晰,效率最高。
文件操作:很多时候我们需要对本地文件进行一些增删改查的操作。
模块和包:Python之所以如此受欢迎,很大程度上得益于它有非常丰富模块和包,这些东西可以让你少造轮子。
Python与网络:python获取网页信息、与其他计算机通信、访问数据库等。
以上大部分其实是编程基础,但是只学这些还是不够的,很多企业招聘的Python岗位均需要和其他方向内容相结合,比如大数据、运维、Web等等。因此零基础快速入门进阶Python技能还需要进行系统的学习。
2、python主要学习哪些知识点?
跟几个IT界的大佬提起Python,他们说零基础学好Python很简单,Python进阶需要花费些气力,都说Python简单易学
Python上手很容易, 基本有其他语言编程经验的人可以在1周内学会Python最基本的内容大一python期末考试知识点。(PS:没有基础的人也可以直接学习,速度会慢一点)
今天给你介绍十大入门必备知识点。
1 标识符
标识符是编程用到的名字,用于给变量、函数、语句块等命名,Python 中标识符由字母、数字、下划线组成,不能以数字开头,区分大小写。
以下划线开头的标识符有特殊含义,单下划线开头的标识符,如:_xxx ,表示不能直接访问的类属性,需通过类提供的接口进行访问,不能用 from xxx import * 导入;双下划线开头的标识符,如:__xx,表示私有成员;双下划线开头和结尾的标识符,如:__xx__,表示 Python 中内置标识,如:__init__() 表示类的构造函数。
2 引号
Python 可以使用引号(')、双引号(")、三引号(''' 或 """)来表示字符串,引号的开始与结束须类型相同,三引号可以由多行组成。如下所示:
id = '001'
name = "张三"
skill = '''
唱歌
跳舞'''
skill = """
唱歌
跳舞"""
3 关键字
and exec not assert finally or
break for passclassfrom print
continue global raisedef if return
del importtry elifin while
else is with exceptlambda yield
注意,我们在自定义标识符时是不能使用关键字的。
4 输入输出
Python 输出使用 print(),内容加在括号中即可。如下所示:
print('Hello Python')
1
Python 提供了一个 input(),可以让用户输入字符串,并存放到一个变量里。如下所示:
name = input()
print('Hi',name)
1
2
5 编码
Python2 中默认编码为 ASCII,假如内容为汉字,不指定编码便不能正确的输出及读取,比如我们想要指定编码为 UTF-8,Python 中通过在开头加入 # -*- coding: UTF-8 -*- 进行指定。
Python3 中默认编码为 UTF-8,因此在使用 Python3 时,我们通常不需指定编码。
6 缩进
Python 不使用 {} 来指令函数、逻辑判断等,而是使用缩进,缩进的空格可变。如下所示:
if True:
print(True)
else:
print(False)
1
2
3
4
7 多行
Python 中一般来说会以新行来作为语句的结束标识,如下所示:
a = 128
b = 1024
c = 512
d = a + \
b - \
c
8 注释
Python 中单行注释用 #,多行注释用三个单引号(''')或三个双引号(""")。如下所示:
# 我是单行注释
'''
我是多行注释
我是多行注释
'''
9 数据类型
整数:可以为任意大小、包含负数
浮点数:就是小数
字符串:以单引号 '、双引号"、三引号 ''' 或 """括起来的文本
布尔:只有 True、False 两种值
空值:用 None 表示
变量:是可变的
常量:不可变
10 运算符
10.1 常用运算符
运算符描述示例
+相加a + b
-相减a - b
*相乘a * b
/相除a / b
%取模a % b
**幂a**b 表示 a 的 b 次幂
//取整除9 // 4 结果为 2
==是否相等a == b
!=是否不等于a != b
>是否大于a > b
>=是否大于等于a >= b
<=是否小于等于a <= b
=简单的赋值运算符a = b + c
+=加法赋值运算符a += b 等效于 a = a + b
-=减法赋值运算符a -= b 等效于 a = a - b
*=乘法赋值运算符a *= b 等效于 a = a * b
/=除法赋值运算符a /= b 等效于 a = a / b
%=取模赋值运算符a %= b 等效于 a = a % b
**=幂赋值运算符a **= b 等效于 a = a ** b
//=取整除赋值运算符a //= b 等效于 a = a // b
&与a & b
以上回答希望对你有所帮助,想学习Python自学有难度,可以考虑培训机构看看,千锋就很不错,推荐你去看看
3、学python需要什么基础知识
学python需要的基础知识说明如下:
Python作为一种跨平台的计算机,有自己独特的知识点与技术层面。入门学习要掌握Python特点、Python的优缺点、Python代码的执行过程、Python中的基础语法等基础知识。
一、Python的特点:
1、Python是一门面向对象的语言,在Python中一切皆对象;
2、Python是一门解释性语言;
3、Python是一门交互式语言,即其在终端中进行命令编程;
4、Python是一门跨平台的语言【没有操作系统的限制,在任何操作系统上都可以运行Python代码】;
5、Python拥有强大和丰富的库,又被称为胶水语言,能把其他语言(主要c/c++)写的模块很轻松地结合在一起。
二、Python的优缺点:
1、优点:
a、易于维护和学习
b、广泛的标准库【提供了大量的工具】
c、可扩展性
d、Python对于大多数据库都有相应的接口【Mysql、sqlites3、MongoDB、Redis等】
e、支持GUI编程【图形化界面】
f、语法简单,易于学习
2、缺点:
a、和C语言相比较Python的代码运行速度慢
b、代码无法加密
三、Python代码的执行过程:
大致流程:源码编译为字节码(.pyc)----->Python------->执行编译好的字节码----->Python虚拟机将字节码翻译成相对应的机器指令()。
Python程序运行时,先编译字节码并保存到内存中,当程序运行结束后,Python将内存中的字节码对象写到.pyc文件中。
第二次再运行时,先从硬盘中寻找.pyc文件,如果找到,则直接载入,否则重复上面过程。
四、Python中的基础语法:
1、Python中变量在内存中的存储
2、基本数据类型
3、关键字、和内置函数
4、Python
5、Python中的语句
4、学习Python需要掌握哪些知识?
以下是python全栈开发课程学习路线,可以按照这个课程大纲有规划的进行学习:
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段八:人工智能
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、数据分析 、图像识别、自然语言翻译等。
阶段九:自动化运维&开发
Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
阶段十:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
对于Python开发有兴趣的小伙伴们,不妨先从看看Python开发教程开始入门!B站上有很多的Python教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。
5、python工程师需要掌握什么知识
1、Python基础与Linux数据库
技能达标要求:掌握Python基础语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容。知识点包括Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、Python常用标准库模块、函数、异常处理、MySQL使用、协程等。
2、WEB全栈
技能达标要求:掌握WEB前端技术内容,掌握WEB后端框架,熟练使用Flask、Tornado、Django。涉及的知识点有HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、Flask Views、Flask模板、数据库操作、Flask配置等。
3、数据分析+人工智能
技能达标要求:掌握爬虫、数据采集、数据机构与算法,掌握人工智能技术。涉及的知识点有数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等。
4、高级进阶
技能达标要求:掌握自动化运维与区块链开发技术,具备自动化运维项目以及区块链项目经验。涉及的知识点有项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等。
6、Python课程内容都学习什么啊?
贺圣军Python轻松入门到项目实战(经典完整版)(超清视频)百度网盘
链接: https://pan.baidu.com/s/1C9k1o65FuQKNe68L3xEx3w
提取码: ja8v 复制这段内容后打开百度网盘手机App,操作更方便哦
若资源有问题欢迎追问~
7、Python语言学什么?
这里整理了一份系统全面的Python开发学习路线,主要涉及以下知识,感兴趣的小伙伴欢迎一起来学习~
第一阶段:专业核心基础
阶段目标:
1. 熟练掌握Python的开发环境与编程核心知识
2. 熟练运用Python面向对象知识进行程序开发
3. 对Python的核心库和组件有深入理解
4. 熟练应用SQL语句进行数据库常用操作
5. 熟练运用Linux操作系统命令及环境配置
6. 熟练使用MySQL,掌握数据库高级操作
7. 能综合运用所学知识完成项目
知识点:
Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。
1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。
2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。
3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。
4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。
5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。
第二阶段:PythonWEB开发
阶段目标:
1. 熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系统中的前后端交互过程与通信协议
3. 熟练运用Web前端和Django和Flask等主流框架完成Web系统开发
4. 深入理解网络协议,分布式,PDBC,AJAX,JSON等知识
5. 能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理
6. 使用Web开发框架实现贯穿项目
知识点:
Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。
1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。
2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。
3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。
4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。
第三阶段:爬虫与数据分析
阶段目标:
1. 熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析
2. 熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取
3. 熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理
4. 熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取
5. 熟练掌握数据分析相关概念及工作流程
6. 熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用
7. 熟练掌握数据清洗、整理、格式转换、数据分析报告编写
8. 能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战
知识点:
网络爬虫开发、数据分析之Numpy、数据分析之Pandas。
1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。
2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。
3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。
4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。
第四阶段:机器学习与人工智能
阶段目标:
1. 理解机器学习相关的基本概念及系统处理流程
2. 能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题
3. 熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等
4. 掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等
5. 掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目
知识点:
1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。
2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflow playround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。
8、高中信息技术python知识点有哪些?
高中信息技术python知识点有:
17%4 结果为 1,表示取,17除以4商4,余数为1。
4**2 结果为 16,求4的平方。
3**3 结果为 27,求3的立方。
@*8 的结果为 '@@@@@@@@',表示把@重复8次得到一个新。
int(10.5),把小数10.5转成整数10。
float(10),把整数10转成小数10.0。
int("20"),把字符串"20"转成整数20。
str(20),把整数20转成字符串"20"。
信息技术python编写程序,根据输入的百分制分数,将其转换为等级制(优、良、中、及格、不及格)并输出。
>90-优秀。
80到90-良好。
70到80-良好。
60到70-良好。
<60-不及格。