Mindspore安装

news2025/1/12 8:50:03

本文用于记录搭建昇思MindSpore开发及使用环境的过程,并通过MindSpore的API快速实现了一个简单的深度学习模型。

什么是MindSpore?

昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景覆盖三大目标。

安装步骤

鉴于笔者手头硬件资源有限,这里采用的环境是CPU。如下是在CPU环境的Windows系统上,使用pip方式快速安装MindSpore的步骤:

  1. 确认系统环境信息
  • 确认安装Windows 10是x86架构64位操作系统。
  • 确认安装Python(>=3.7.5),已有Python环境是Python3.9.7版本,满足要求。
  1. 安装MindSpore

运行以下命令:

# Python3.9
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

在联网状态下,安装whl包时会自动下载mindspore安装包的依赖项。

安装报错

ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问。: 'D:\\Program Files\\Anaconda\\Lib\\site-packages\\~-mpy\\.libs\\libopenblas.FB5AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll' Consider using the `--user` option or check the permissions.

在这里插入图片描述

这是因为pip安装模块的权限不够导致失败,笔者是通过执行下面的命令得以解决。

pip install -i http://pypi.douban.com/simple/  pip -U --trusted-host pypi.douban.com --user

执行完上述命令之后再次安装mindspore,如下图。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sRliKJ4o-1676715767200)(imgs/230217155424.png)]

在这里插入图片描述

  1. 验证安装是否成功
python -c "import mindspore;mindspore.run_check()"

输出如下内容,表明安装成功。

在这里插入图片描述

快速入门

这里以手写体数字识别为例,体验了基于MindSpore的API实现深度学习模型的过程。

场景描述

本文使用Mindspore,基于Resnet50神经网络完成手写体数字识别。

数据集处理

下载Mnist数据集

Mnist数据集是机器学习领域的一款经典数据集,其中包括6w个训练样本和1w个测试样本,每个样本都是28*28像素的灰度手写数字图片,数字0-9共10类。通过如下代码下载:

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

在这里插入图片描述

获取数据集对象

train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')
print(train_dataset.get_col_names()) #['image', 'label']

数据集目录如下,其中标记为images的是图片,labels是标签。

在这里插入图片描述

数据处理

数据集自动下载完成后,可使用数据处理模块 mindspore.dataset 进行预处理。这里采用的是流水线处理,在海量数据下,该处理模式可以实现数据的高效处理,当然也会占用更多的CPU和内存资源。

  1. 使用map对图像数据及标签进行变换处理,并将处理完的数据集打包,batchsize为64。map函数会将数据集中第二个参数的指定的列作为输入,调用第一个参数的处理函数执行处理,如果有多个处理函数,上一个函数的输出作为下一个函数的输入。其中,map的第一个参数是处理函数列表,第二个参数表示需要处理的列。
def data_process(dataset, batch_size):
    image_transforms = [
        #图像缩放,输出像素值output = image * rescale + shift.
        vision.Rescale(1.0 / 255.0, 0),
        #根据平均值和标准偏差对输入图像进行归一化,其中,mean是图像各个通道的均值,std是各个通道的标准差
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        #转换图像格式,在不同的硬件设备中可能会对(height, width, channel)
        # 或(channel, height, width)两种不同格式有针对性优化。MindSpore设
        # 置HWC为默认图像格式,在有CWH格式需求时,可使用该变换进行处理。
        vision.HWC2CHW()
    ]
    # 转为mindspore的int32格式
    label_transform = transforms.TypeCast(mindspore.int32)
    
    # 对各个图像按照流水线处理
    dataset = dataset.map(image_transforms, 'image')
    # 将各个标签转为int32类型
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = data_process(train_dataset, 64)
test_dataset = data_process(test_dataset, 64)
  1. 使用create_tuple_iterator或create_dict_iterator对数据集进行迭代。
# image, label = next(train_dataset.create_tuple_iterator())

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break

for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break

网络构建

基于mindspore的nn.Cell类,构建Resnet50神经网络。

神经网络模型由神经网络层和Tensor操作构成,基于 mindspore.nn 可实现常见的神经网络层,其中 nn.Cell 类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型可表示为一个Cell,它又是由
不同的子Cell组成。基于这样的嵌套结构,即可简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

定义模型类

定义神经网络模型继承nn.Cell类,再在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

构建完成后,实例化Network对象,并查看结构。

model = Network()
print(model)

在这里插入图片描述

模型层分解

构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像)。

input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape) #(3, 28, 28)
  • nn.Flatten

    实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。

    flatten = nn.Flatten()
    flat_image = flatten(input_image)
    print(flat_image.shape) # (3, 784)
    
  • nn.Dense

    nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。

    layer1 = nn.Dense(in_channels=28*28, out_channels=20)
    hidden1 = layer1(flat_image)
    print(hidden1.shape) #(3, 20)
    
  • nn.ReLU

    nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。

    print(f"Before ReLU: {hidden1}\n\n")
    hidden1 = nn.ReLU()(hidden1)
    print(f"After ReLU: {hidden1}")
    

在这里插入图片描述

  • nn.SequentialCell

    nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell来快速组合构造一个神经网络模型。

    seq_modules = nn.SequentialCell(
        flatten,
        layer1,
        nn.ReLU(),
        nn.Dense(20, 10)
    )
    
    logits = seq_modules(input_image)
    print(logits.shape) #(3,10)
    
  • nn.Softmax

    最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis指定的维度数值和为1。

    softmax = nn.Softmax(axis=1)
    pred_probab = softmax(logits)
    

    输出如下:

    [[0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]
    [0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]
    [0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]]
    

模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")

for name, param in model.parameters_and_names():
    print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

在这里插入图片描述

模型训练

#定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

通常,一个完成的模型训练过程包括如下三步:

  1. 正向计算:模型对结果预测,输出logits值,并与正确标签label求预测损失loss。
  2. 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
  3. 参数优化:将梯度更新到参数上。
# 定义正向计算函数
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

#通过mindspore中的函数变换获取梯度计算函数
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 定义训练函数
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

定义测试函数,评估模型性能。

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看出,
loss不断下降,准确度不断提高。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")

在这里插入图片描述

保存模型

模型训练完成后,将参数进行保存。

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

加载模型

加载模型包括两步,具体如下。

# 实例化模型对象,构造模型。
model = Network()
# 加载模型参数,并将其加载至模型上。
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load = mindspore.load_param_into_net(model, param_dict)
#param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。
print(param_not_load)#[]

模型推理

加载后的模型即可直接用于预测推理。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/355024.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

QM9数据集示例项目学习图神经网络

目录QM9数据集:QM9数据提取的特征:网络结构的设计官网示例代码注释:QM9数据集: QM9为小有机分子的相关的、一致的和详尽的化学空间提供量子化学特征,该数据库可用于现有方法的基准测试,新方法的开发&#…

【算法】两道算法题根据提供字母解决解码方法和城市的天际线天际线问题

算法目录解码方法Java解答参考:天际线问题Java解答参考:大家好,我是小冷。 上一篇了解了项目相关的知识点 接下来看下两道算法题吧,用Java解答,可能更能激发一下大脑思考。 解码方法 题目要求: 一条包含…

将 Supabase 作为下一个后端服务

对于想快速实现一个产品而言,如果使用传统开发,又要兼顾前端开发,同时又要花费时间构建后端服务。然而有这么一个平台(Baas Backend as a service)后端即服务,能够让开发人员可以专注于前端开发&#xff0c…

Java反序列化漏洞——CommonsCollections4.0版本—CC2、CC4

一、概述4.0版本的CommonsCollections对之前的版本做了一定的更改,那么之前的CC链反序列化再4版本中是否可用呢。实际上是可用的,比如CC6的链,引入的时候因为⽼的Gadget中依赖的包名都是org.apache.commons.collections ,⽽新的包…

【构建工具】Gradle中文教程

文章目录Gradle 简介Gradle 概述基于声明的构建和基于约定的构建为以依赖为基础的编程方式提供语言支持构建结构化深度 APIGradle 的扩展多项目构建多种方式管理依赖Gradle 是第一个构建集成工具易于移植GroovyThe Gradle wrapper自由和开源为什么使用 Groovy?Gradle 安装先决…

Pycharm搭建一个Django项目

File->new project 点击create, 等待一下即可 查看安装 Django 版本: 在 Pycharm 底部选择 Terminal 然后在里面输入:python -m django --version 启动项目: 在 Terminal 里面输入: python manage.py runserver 查看文件目…

一文精通MVCC机制

MVCC(Multi-Version Concurrency Control)多版本并发控制机制使用串行化隔离级别时,mysql会将所有的操作加锁互斥,来保证并发安全。这种方式必然降低并发性能。mysql在读已提交和可重复读隔离级别下,对一行数据的读和写两个操作默认是不会通过…

【Unity3d】Unity与iOS之间通信

在unity开发或者sdk开发经常遇到unity与移动端原生层之间进行通信,这里把它们之间通信做一个整理。 关于Unity与Android之间通信,参考【Unity3d】Unity与Android之间通信 Unity调用Objective-C 主要分三个步骤: (一)、在xcode中定义要被u…

php学习笔记

之前看过php的基础教学视频,了解了一下,自己没有上手实践,现在为了项目需要,需要扎实学习一下,所以做一下笔记吧。 php学习笔记1.基础2.动态网站的开发学习2.1会员管理系统1.基础 之前看过一个4小时的基础视频&#x…

Go 数组和切片反思

切片的底层数据结构是数组,所以,切片是基于数组的上层封装,使用数组的场景,也完全可以使用切片。 类型比较 我看到 go 1.17 有对切片和数组转换的优化,禁不住纳闷,有什么场景是必须数组来完成的呢&#x…

vue项目第七天

项目中模块操做业务使用ajax(需要使用接口认证)修改封装的findData发送ajax请求管理员列表内部搜索业务复用之前的findData 方法即可实现整个查询业务。实现退出业务在下拉菜单上添加事件以及属性。用户退出登录,二次登录系统菜单可能不存在的…

linux环境搭建私有gitlab仓库

搭建之前,需要安装相应的依赖包,并且要启动sshd服务(1).安装policycoreutils-python openssh-server openssh-clients [rootVM-0-2-centos ~]# sudo yum install -y curl policycoreutils-python openssh-server openssh-clients [rootVM-0-2-centos ~]…

(API)接口测试的关键技术

接口测试也就是API测试,从名字上可以知道是面向接口的测试活动。所以在讲API测试之前,我们应该说清楚接口是什么,那么接口就是有特定输入和特定输出的一套逻辑处理单元,而对于接口调用方来说,不用知道自身的内部实现逻…

Spring 中经典的 9 种设计模式

1.简单工厂(非23种设计模式中的一种) 2.工厂方法 3.单例模式 4.适配器模式 5.装饰器模式 6.代理模式 7.观察者模式 8.策略模式 9.模版方法模式 Spring中涉及的设计模式总结 1.简单工厂(非23种设计模式中的一种) 实现方式: BeanFactory。Spring中的BeanFa…

Android 初代 K-V 存储框架 SharedPreferences,旧时代的余晖?

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 前言 大家好,我是小彭。 SharedPreferences 是 Android 平台上轻量级的 K-V 存储框架,亦是初代 K-V 存储框架,至今被很多应用沿用。 有的…

【C语言】大小端字节序问题

一、大小端字节序问题 大小端是由CPU决定的,大小端可以理解为字节顺序,所以大小端全称叫大端字节序、小端字节序。其实大端、小端这两个词是从《格列佛游记》里出来的。《格列佛游记》有一段讲的是吃鸡蛋是从大的那头敲开还是小的那头敲开的问题&#xf…

拯救了大批爬虫程序员,因为一个简单的神器

相信大家应该都写过爬虫,简单的爬虫只需要使用 requests 即可。遇到复杂的爬虫,就需要在程序里面加上请求头和参数信息。类似这种:我们一般的步骤是,先到浏览器的网络请求中找到我们需要的请求,然后将请求头和参数信息…

CI/CD --- 什么才是真正的自动化平台

近2年在软件开发中比较火的两个术语,一个是敏捷开发,另外一个就是CI/CD了;敏捷开发顾名思义就是“以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发”。那CI/CD(Continuous Integration、 Continuous Del…

自抗扰控制ADRC之微分器TD

目录 前言 1 全程快速微分器 1.1仿真分析 1.2仿真模型 1.3仿真结果 1.4结论 2 Levant微分器 2.1仿真分析 2.2仿真模型 2.3仿真结果 3.总结 前言 工程上信号的微分是难以得到的,所以本文采用微分器实现带有噪声的信号及其微分信号提取,从而实现…

0216-0218复习:继承

目录 继承 一、基本介绍 二、示意图 三、基本语法 四、入门案例 父类 子类1 子类2 main方法 五、继承细节 第一条 第二条 第三条 第四条 ​编辑 第五条 第六条 第七条 第八条 第九条 第十条 六、继承本质 七、练习题 第三题 继承 一、基本介绍 继承可以…