求职季哪种 Python 程序员能拿高薪?

news2024/11/13 15:36:10

在这里插入图片描述

本文以Python爬虫、数据分析、后端、数据挖掘、全栈开发、运维开发、高级开发工程师、大数据、机器学习、架构师这10个岗位,从拉勾网上爬取了相应的职位信息和任职要求,并通过数据分析可视化,直观地展示了这10个职位的平均薪资和学历、工作经验要求。

文章很长,耐心观看。

01

爬虫准备

1、先获取薪资和学历、工作经验要求

由于某网数据加载是动态加载的,需要我们分析。分析方法如下:

在这里插入图片描述

F12分析页面数据存储位置

我们发现网页内容是通过post请求得到的,返回数据是json格式,那我们直接拿到json数据即可。

我们只需要薪资和学历、工作经验还有单个招聘信息,返回json数据字典中对应的英文为:positionId,salary, education, workYear(positionId为单个招聘信息详情页面编号)。相关操作代码如下:

  • 文件存储:
def file_do(list_info):
    # 获取文件大小
    file_size = os.path.getsize(r'G:\lagou_anv.csv')
    if file_size == 0:
        # 表头
        name = ['ID','薪资', '学历要求', '工作经验']
        # 建立DataFrame对象
        file_test = pd.DataFrame(columns=name, data=list_info)
        # 数据写入
        file_test.to_csv(r'G:\lagou_anv.csv', encoding='gbk', index=False)
    else:
        with open(r'G:\lagou_anv.csv', 'a+', newline='') as file_test:
            # 追加到文件后面
            writer = csv.writer(file_test)
            # 写入文件
            writer.writerows(list_info)
  • 基本数据获取:
# 1. post 请求 url
req_url = 'https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false'
# 2.请求头 headers
headers = {
    'Accept': 'application/json,text/javascript,*/*;q=0.01',
    'Connection': 'keep-alive',
    'Cookie': '你的Cookie值,必须加上去',
    'Host': 'www.lagou.com',
    'Referer': 'https://www.lagou.com/jobs/list_Python?labelWords=&fromSearch=true&suginput=',
    'User-Agent':  str(UserAgent().random),
}

def get_info(headers):
    # 3.for 循环请求(一共30页)
    for i in range(1, 31):
        # 翻页
        data = {
            'first': 'true',
            'kd': 'Python爬虫',
            'pn': i
        }
        # 3.1 requests 发送请求
        req_result = requests.post(req_url, data=data, headers=headers)
        req_result.encoding = 'utf-8'
        print("第%d页:"%i+str(req_result.status_code))
        # 3.2 获取数据
        req_info = req_result.json()
        # 定位到我们所需数据位置
        req_info = req_info['content']['positionResult']['result']
        print(len(req_info))
        list_info = []
        # 3.3 取出具体数据
        for j in range(0, len(req_info)):
            salary = req_info[j]['salary']
            education = req_info[j]['education']
            workYear = req_info[j]['workYear']
            positionId = req_info[j]['positionId']
            list_one = [positionId,salary, education, workYear]
            list_info.append(list_one)
        print(list_info)
        # 存储文件
        file_do(list_info)
        time.sleep(1.5)
  • 运行结果:

图片

2、根据获取到的positionId 来访问招聘信息详细页面

  • 根据positionId还原访问链接:
position_url = []
def read_csv():
    # 读取文件内容
    with open(r'G:\lagou_anv.csv', 'r', newline='') as file_test:
        # 读文件
        reader = csv.reader(file_test)
        i = 0
        for row in reader:
            if i != 0 :
                # 根据positionID补全链接
                url_single = "https://www.lagou.com/jobs/%s.html"%row[0]
                position_url.append(url_single)
            i = i + 1
        print('一共有:'+str(i-1)+'个')
        print(position_url)
  • 访问招聘信息详情页面,获取职位描述(岗位职责和岗位要求)并清理数据:
def get_info():
    for position_url in position_urls:
        work_duty = ''
        work_requirement = ''
        response00 = get_response(position_url,headers = headers)
        time.sleep(1)
        content = response00.xpath('//*[@id="job_detail"]/dd[2]/div/p/text()')
        # 数据清理
        j = 0
        for i in range(len(content)):
            content[i] = content[i].replace('\xa0',' ')
            if content[i][0].isdigit():
                if j == 0:
                    content[i] = content[i][2:].replace('、',' ')
                    content[i] = re.sub('[;;.0-9。]','', content[i])
                    work_duty = work_duty+content[i]+ '/'
                    j = j + 1
                elif content[i][0] == '1' and not content[i][1].isdigit():
                    break
                else:
                    content[i] = content[i][2:].replace('、', ' ')
                    content[i] = re.sub('[、;;.0-9。]','',content[i])
                    work_duty = work_duty + content[i]+ '/'
        m = i
        # 岗位职责
        write_file(work_duty)
        print(work_duty)
        # 数据清理
        j = 0
        for i in range(m,len(content)):
            content[i] = content[i].replace('\xa0',' ')
            if content[i][0].isdigit():
                if j == 0:
                    content[i] = content[i][2:].replace('、', ' ')
                    content[i] = re.sub('[、;;.0-9。]', '', content[i])
                    work_requirement = work_requirement + content[i] + '/'
                    j = j + 1
                elif content[i][0] == '1' and not content[i][1].isdigit():
                    # 控制范围
                    break
                else:
                    content[i] = content[i][2:].replace('、', ' ')
                    content[i] = re.sub('[、;;.0-9。]', '', content[i])
                    work_requirement = work_requirement + content[i] + '/'
        # 岗位要求
        write_file2(work_requirement)
        print(work_requirement)
        print("-----------------------------")
  • 运行结果:

图片

duty

图片

require

3、四种图可视化数据+数据清理方式

  • 矩形树图:
# 1.矩形树图可视化学历要求
from pyecharts import TreeMap
education_table = {}
for x in education:
    education_table[x] = education.count(x)
key = []
values = []
for k,v in education_table.items():
    key.append(k)
    values.append(v)

data = []
for i in range(len(key)) :
    dict_01 = {"value": 40, "name": "我是A"}
    dict_01["value"] = values[i]
    dict_01["name"] = key[i]
    data.append(dict_01)
tree_map = TreeMap("矩形树图", width=1200, height=600)
tree_map.add("学历要求",data, is_label_show=True, label_pos='inside')
  • 玫瑰饼图:
# 2.玫瑰饼图可视化薪资
import re
import math
'''
# 薪水分类
parameter : str_01--字符串原格式:20k-30k
returned value : (a0+b0)/2 --- 解析后变成数字求中间值:25.0
'''
def assort_salary(str_01):
    reg_str01 = "(\d+)"
    res_01 = re.findall(reg_str01, str_01)
    if len(res_01) == 2:
        a0 = int(res_01[0])
        b0 = int(res_01[1])
    else :
        a0 = int(res_01[0])
        b0 = int(res_01[0])
    return (a0+b0)/2

from pyecharts import Pie
salary_table = {}
for x in salary:
    salary_table[x] = salary.count(x)

key = ['5k以下','5k-10k','10k-20k','20k-30k','30k-40k','40k以上']
a0,b0,c0,d0,e0,f0=[0,0,0,0,0,0]

for k,v in salary_table.items():
    ave_salary = math.ceil(assort_salary(k))
    print(ave_salary)
    if ave_salary < 5:
        a0 = a0 + v
    elif ave_salary in range(5,10):
        b0 = b0 +v
    elif ave_salary in range(10,20):
        c0 = c0 +v
    elif ave_salary in range(20,30):
        d0 = d0 +v
    elif ave_salary in range(30,40):
        e0 = e0 +v
    else :
        f0 = f0 + v
values = [a0,b0,c0,d0,e0,f0]

pie = Pie("薪资玫瑰图", title_pos='center', width=900)
pie.add("salary",key,values,center=[40, 50],is_random=True,radius=[30, 75],rosetype="area",is_legend_show=False,is_label_show=True)
  • 普通柱状图:
# 3.工作经验要求柱状图可视化
from pyecharts import Bar
workYear_table = {}
for x in workYear:
    workYear_table[x] = workYear.count(x)
key = []
values = []
for k,v in workYear_table.items():
    key.append(k)
    values.append(v)
bar = Bar("柱状图")
bar.add("workYear", key, values, is_stack=True,center= (40,60))
  • 词云图:
import jieba
from pyecharts import WordCloud
import pandas as pd
import re,numpy

stopwords_path = 'H:\PyCoding\Lagou_analysis\stopwords.txt'
def read_txt():
    with open("G:\lagou\Content\\ywkf_requirement.txt",encoding='gbk') as file:
        text = file.read()
        content = text
        # 去除所有评论里多余的字符
        content = re.sub('[,,。. \r\n]', '', content)
        segment = jieba.lcut(content)
        words_df = pd.DataFrame({'segment': segment})
        # quoting=3 表示stopwords.txt里的内容全部不引用
        stopwords = pd.read_csv(stopwords_path, index_col=False,quoting=3, sep="\t", names=['stopword'], encoding='utf-8')
        words_df = words_df[~words_df.segment.isin(stopwords.stopword)]
        words_stat = words_df.groupby(by=['segment'])['segment'].agg({"计数": numpy.size})
        words_stat = words_stat.reset_index().sort_values(by=["计数"], ascending=False)
        test = words_stat.head(200).values
        codes = [test[i][0] for i in range(0, len(test))]
        counts = [test[i][1] for i in range(0, len(test))]
        wordcloud = WordCloud(width=1300, height=620)
        wordcloud.add("必须技能", codes, counts, word_size_range=[20, 100])
        wordcloud.render("H:\PyCoding\Lagou_analysis\cloud_pit\ywkf_bxjn.html")

02

Python爬虫岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

爬虫技能

关键词解析:

  • 学历:本科
  • 工作月薪:10k-30k
  • 工作经验:1-5年
  • 技能:分布式、多线程、框架、Scrapy、算法、数据结构、数据库

综合:爬虫这个岗位在学历要求上比较放松,大多数为本科即可,比较适合想转业的老哥小姐姐,学起来也不会特别难。而且薪资待遇上也还算比较优厚,基本在10k以上。不过唯一对工作经验要求还是比较高的,有近一半的企业要求工作经验要达到3年以上。

03

Python数据分析岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

数据分析技能

关键词解析:

  • 学历:本科(硕士比例有所增高)
  • 工作月薪:10k-30k
  • 工作经验:1-5年
  • 技能:SAS、SPSS、Hadoop、Hive、数据库、Excel、统计学、算法

综合:数据分析这个岗位在学历要求上比爬虫要求稍微高一些,硕士比例有所提升,专业知识上有一定要求。薪资待遇上也还算比较优厚,基本在10k以上,同时薪资在30k-40k的比例也有所上升。对工作经验要求还是比较高,大部分的企业要求工作经验要达到3年以上。

04

Python后端岗位

学历要求

工作月薪

工作经验要求

后端技能

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

关键词解析:

  • 学历:本科
  • 工作月薪:10k-30k
  • 工作经验:3-5年
  • 技能:Flask、Django、Tornado、Linux、MySql、Redis、MongoDB、TCP/IP、数学(哈哈)

综合:web后端这个岗位对学历要求不高,但专业知识上有很大要求,得会Linux操作系统基本操作、三大主流数据库的使用、以及三大基本web框架的使用等计算机相关知识,总体来说难道还是比较大。薪资待遇上也比较优厚,基本在10k以上,同时薪资在30k-40k的比例也有近20%。对工作经验要求还是比较高,大部分的企业要求工作经验要达到3年以上。

05

Python数据挖掘岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

数据挖掘技能

关键词解析:

  • 学历:本科(硕士)
  • 工作月薪:20k-40k
  • 工作经验:3-5年
  • 技能:学历(hhh)、Hadoop、Spark、MapReduce、Scala、Hive、聚类、决策树、GBDT、算法

综合:数据挖掘这个岗位,在学历要求是最高的,虽然还是本科居多,但硕士比例明显增加,还有公司要求博士学历。在专业知识上也有很大要求,得会Linux操作系统基本操作、大数据框架Hadoop、Spark以及数据仓库Hive的使用等计算机相关知识,总体来说难道还是比较大。薪资待遇上特别优厚,基本在20k以上,薪资在30k-40k的比例也有近40%,对工作经验要求还是比较高,大部分的企业要求工作经验要达到3年以上。

06

Python全栈开发岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

全栈开发技能

关键词解析:

  • 学历:本科
  • 工作月薪:10k-30k
  • 工作经验:3-5年
  • 技能:测试、运维、管理、开发、数据结构、算法、接口、虚拟化、前端

综合:全栈开发这个岗位什么都要懂些,什么都要学些,在学历要求上并不太高,本科学历即可,在专业知识上就不用说了,各个方面都得懂,还得理解运用。薪资待遇上也还可以,基本在10k以上,薪资在30k-40k的比例也有近20%。对工作经验要求还是比较高,大部分的企业要求工作经验要达到3年以上。总体来说,就我个人而言会觉得全栈是个吃力多薪水少的岗位。

07

Python运维开发岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

运维开发技能

关键词解析:

  • 学历:本科
  • 工作月薪:10k-30k
  • 工作经验:3-5年
  • 技能:SVN、Git、Linux、框架、shell编程、mysql,redis,ansible、前端框架

综合:运维开发这个岗位在学历要求上不高,除开占一大半的本科,就是专科了。工作经验上还是有一些要求,大多数要求有3-5年工作经验。从工资上看的话,不高也不低,20k以上也占有62%左右。要学习的东西也比较多,前端、后端、数据库、操作系统等等。

08

Python高级开发工程师岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

高级开发工程师技能

关键词解析:

  • 学历:本科
  • 工作月薪:20k左右
  • 工作经验:3-5年
  • 技能:WEB后端、MySQL、MongoDB、Redis、Linux系统(CentOS)、CI/CD 工具、GitHub

综合:高级开发工程师这个岗位在学历要求上与运维开发差不多,薪资也相差不大,22%以上的企业开出了30k以上的薪资,65%左右企业给出20k以上的薪资。当然,对工作经验上还是要求较高,有近一半的企业要求工作经验要达到3年以上。

09

Python大数据岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

大数据技能

关键词解析:

  • 学历:本科(硕士也占比很大)
  • 工作月薪:30k以上
  • 工作经验:3-5年
  • 技能:前端开发、 MySQL、Mongo、Redis、Git
    、Flask、Celery、Hadoop/HBase/Spark/Hive、Nginx

综合:现在是大数据时代,大数据这个岗位也是相当火热,在学历要求上几乎与运维开发一模一样。当然,可能数据上出现了巧合,本科居多,工作经验上1-5年占据一大半,薪资上也基本上在20k以上,该岗位薪资在20k以上的企业占了55%左右。

10

Python机器学习岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

机器学习技能

关键词解析:

  • 学历:本科(硕士也占比很大)
  • 工作月薪:30k以上
  • 工作经验:3-5年
  • 技能:Machine Learning,Data Mining,Algorithm
    研发,算法,Linux,决策树,TF,Spark+MLlib,Cafe

综合:机器学习这个岗位在学历要求上比较严格,虽然看起来是本科居多,但对于刚毕业或毕业不久的同学,如果只是个本科,应聘还是很有难度的。当然机器学习岗位薪资特高,60%在30k以上,近90%在20k以上,97%在10k以上。除开对学历要求比较高外,对工作经验要求也比较高,有近一半的企业要求工作经验要达到3年以上。

11

Python架构师岗位

图片

学历要求

图片

工作月薪

图片

工作经验要求

图片

架构师技能

关键词解析:

  • 学历:本科
  • 工作月薪:30k以上
  • 工作经验:5-10年
  • 技能:Flask,Django,MySQL,Redis,MongoDB,Hadoop,Hive,Spark,ElasticSearch,Pandas,Spark/MR,Kafka/rabitmq

综合:架构师这个岗位单从学历上看不出什么来,但在薪资上几乎与机器学习一样,甚至比机器学习还要高,机器学习中月薪40k以上的占23.56%,架构师中月薪40k以上的占30.67%。在学历要求上比机器学习要略低,本科居多,但在工作经验上一半以上的企业要求工作经验在5-10年。在必要技能上也要求特别严格,比之前说过的全栈开发师有过之而无不及。

看着这月薪,我是超级想去了,你呢?

12

写在最后

从上文可以看出,Python相关的各个岗位薪资还是不错的,基本上所有岗位在10k以上的占90%,20k以上的也基本都能占60%左右。而且学历上普遍来看,本科学历占70%以上。唯一的是需要工作经验,一般得有个3-5年工作经验,也就是如果24岁本科毕业,27岁就有很大机会拿到月薪20k以上。有没有很心动?

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。
在这里插入图片描述

👉面试刷题👈

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/352025.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

02 Context的使用

对于 HTTP 服务而言&#xff0c;超时往往是造成服务不可用、甚至系统瘫痪的罪魁祸首。 context 标准库设计思路 为了防止雪崩&#xff0c;context 标准库的解决思路是&#xff1a;在整个树形逻辑链条中&#xff0c;用上下文控制器 Context&#xff0c;实现每个节点的信息传递…

Package ‘oniguruma‘, required by ‘virtual:world‘, not found

一、操作系统环境 OS版本信息&#xff1a;Rocky Linux 9.1 PHP版本&#xff1a;8.0.26 安装的依赖&#xff1a; dnf -y install libXpm-devel libXext-devel gmp gmp-devel libicu* icu* net-snmp-devel libpng-devel libjpeg-devel freetype-devel libxslt-devel sqlite…

真正意义上的数字零售,最为重要的一点就是要回归零售本身

互联网浪潮的退却并未真正将人们的思维带离互联网的牢笼&#xff0c;相反&#xff0c;越来越多的人依然在用互联网式的眼光看待后互联网时代的事物。尽管这样一种做法可以在一定程度上取得一定的效果&#xff0c;但是&#xff0c;如果仅仅只是用互联网思维来揣度这一切&#xf…

基于虚拟机机的代码保护技术

虚拟机保护技术是基于x86汇编系统的可执行代码转换为字节码指令系统的代码&#xff0c;以达到保护原有指令不被轻易逆向和篡改的目的。 字节码&#xff08;Byte-code&#xff09;是一种包含执行程序&#xff0c;由一序列 op 代码/数据对组成的 &#xff0c;是一种中间码。字节是…

《第一行代码》 第五章:详解广播机制

如果你了解网络通信原理应该会知道&#xff0c;在一个 IP 网络范围中最大的IP 地址是被保留作为广播地址来使用的。比如某个网络的 IP 范围是 192.168.0XXX&#xff0c;子网掩码是255.255.255.0那么这个网络的广播地址就是 192.168.0255广播数据包会被发送到同-网络上的所有端口…

Spring Security OAuth2四种授权模式总结(七)

写在前面&#xff1a;各位看到此博客的小伙伴&#xff0c;如有不对的地方请及时通过私信我或者评论此博客的方式指出&#xff0c;以免误人子弟。多谢&#xff01;如果我的博客对你有帮助&#xff0c;欢迎进行评论✏️✏️、点赞&#x1f44d;&#x1f44d;、收藏⭐️⭐️&#…

【MySQL】MySQL表的增删改查(CRUD)

✨个人主页&#xff1a;bit me&#x1f447; ✨当前专栏&#xff1a;MySQL数据库&#x1f447; ✨算法专栏&#xff1a;算法基础&#x1f447; ✨每日一语&#xff1a;生命久如暗室&#xff0c;不碍朝歌暮诗 目 录&#x1f513;一. CRUD&#x1f512;二. 新增&#xff08;Creat…

将array中元素四舍五入取整的np.rint()方法

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 将array中元素四舍五入取整 np.rint()方法 选择题 关于以下python代码说法错误的一项是? import numpy as np a np.array([-1.7, 1.5, -0.2, 0.3]) print("【显示】a\n",a) pr…

BI是报表?BI是可视化?BI到底是什么?

很多企业认为只要买一个前端商业智能BI分析工具就可以解决企业级的商业智能BI所有问题&#xff0c;这个看法实际上也不可行的。可能在最开始分析场景相对简单&#xff0c;对接数据的复杂度不是很高的情况下这类商业智能BI分析工具没有问题。但是在企业的商业智能BI项目建设有一…

数字化系统使用率低的原因剖析

当“数字化变革”成为热门话题&#xff0c;当“数字化转型”作为主题频频出现在一个个大型会议中&#xff0c;我们知道数字化时代的确到来了。但是&#xff0c;根据Gartner的报告我们看到一个矛盾的现象——85%的企业数字化建设与应用并不理想、但对数字化系统的需求多年来持续…

软件测试项目实战(附全套实战项目教程+视频+源码)

开通博客以来&#xff0c;我更新了很多实战项目&#xff0c;但一部分小伙伴在搭建环境时遇到了问题。 于是&#xff0c;我收集了一波高频问题&#xff0c;汇成本篇&#xff0c;供大家参考&#xff0c;避免重复踩坑。 如果你还遇到过其他坑和未解决的问题&#xff0c;可在评论区…

webpack安装步骤(一)

系列文章目录 安装步骤系列文章目录前言一、Webpack是什么&#xff1f;Webpack官网解释解释内容如下图二、Webpack的安装步骤第一步&#xff1a;检查本机是否已经安装过Webpack&#xff08;全局&#xff09;1.操作如下2.结果如下图第二步&#xff1a;安装webpack&#xff08;非…

利用无线通讯技术构建工厂智能化立体仓储

立体仓库主要通过检测、信息识别、控制、通信、监控调度、大屏显示及计算机管理等装置组成。完成仓库各设备连接无线化&#xff0c;可大幅减少网线布防成本&#xff0c;缩短生产线调度时间&#xff0c;实现汽车装配生产线的柔性生产&#xff0c;提高汽车装配生产的自动化水平。…

短视频的素材在哪里找呢?推荐给你一个好办法

我刚刚在视频号做出了30万播放的小爆款&#xff0c;过去3年我做出了很多6位数播放的视频。在这里&#xff0c;我就大家分享20个我常用的素材渠道&#xff0c;其中一些渠道比较小众。除此之外&#xff0c;我也希望同时讲一下短视频的内容生产。为了方便大家浏览&#xff0c;我把…

使用web3连接Georli测试网络

文章目录1.使用geth方式在终端2.写成脚本2.1 通过metamask &#xff08;现成的太复杂&#xff0c;搞不太来&#xff09;2.2 通过自己的接口3.通过truffle方式连接 &#xff08;不成功&#xff09;目前的工作情况是&#xff0c;已在remix写好执行合约并部署在Georli测试网络中&a…

NJ 时钟自动调整功能(SNTP)

NJ 时钟自动调整功能(SNTP) 实验设备&#xff1a;NJ501-1300 实验目的&#xff1a;NJ使用ntp实现时钟自动调整 1. 实验概览 ​ 本次实验通过NJ的ntp功能&#xff0c;将PLC的时钟和阿里的ntp服务器时钟每隔1分钟同步一次。 阿里ntp服务器的域名为&#xff1a;ntp.aliyun.com…

Python fileinput模块:逐行读取多个文件

前面章节中&#xff0c;我们学会了使用 open() 和 read()&#xff08;或者 readline()、readlines() &#xff09;组合&#xff0c;来读取单个文件中的数据。但在某些场景中&#xff0c;可能需要读取多个文件的数据&#xff0c;这种情况下&#xff0c;再使用这个组合&#xff0…

力扣56.合并区间

文章目录力扣56.合并区间题目描述排序合并力扣56.合并区间 题目描述 以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#xff0c;该数组需恰好覆盖输入中…

windows上配置IIS全过程

文章目录1️⃣ 配置IIS1.1 从开始打开服务器管理1.2 添加角色和功能1.3 添加角色和功能向导1.4 按照如下步骤选择2️⃣ 问题&#xff1a;缺少源文件解决方案优质资源分享作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/1…

与感受野相关的几种网络结构

一、Inception 1. Inception v1 目的 通过设计一个稀疏网络结构&#xff0c;但是能够产生稠密的数据&#xff0c;既能增加神经网络表现&#xff0c;又能保证计算资源的使用效率。 结构 图1-1 Inception v1结构图 特点 共4个通道&#xff0c;其中3个卷积通道分别使用111111…