检测脸部情绪有多难?10行代码就可以搞定!

news2024/11/23 17:23:49

引言

面部表情展示人类内心的情感。它们帮助我们识别一个人是愤怒、悲伤、快乐还是正常。医学研究人员也使用面部情绪来检测和了解一个人的心理健康。

人工智能在识别一个人的情绪方面可以发挥很大的作用。在卷积神经网络的帮助下,我们可以根据一个人的图像或实时视频来识别他的情绪。

Facial Expression Recognition 是一个 Python 库,可用于以更少的努力和更少的代码行检测一个人的情绪。它是使用 Python 中实现的 Tensorflow 和 Keras 库通过深度神经网络开发的。其中使用的数据集来自表示学习中的 Kaggle 竞赛挑战:面部表情识别挑战。

安装

我们可以使用 pip 在本地系统中安装库。只需运行下面的命令,就会看到您的库正在安装。

pip install per

依赖项:

1OpenCV 3.2+

2. Tensorflow 1.7+

3. Python 3.6+

预测图像上的情绪

from fer import FER
import matplotlib.pyplot as plt 
img = plt.imread("img.jpg")
detector = FER(mtcnn=True)
print(detector.detect_emotions(img))
plt.imshow(img)

使用 emotion.py 保存并简单地使用 python emotion.py 运行它。

输出:

[OrderedDict([(‘box’, (160, 36, 99, 89)), (’emotions’, {‘angry’: 0.0, ‘disgust’: 0.0, ‘fear’: 0.0, ‘happy’: 1.0, ‘sad’: 0.0, ‘surprise’: 0.0, ‘neutral’: 0.0})])]

31ac4ade386701eaaa2f2384c30b17e7.png

实时预测的 Web 应用程序代码

from fer import FER
import matplotlib.pyplot as plt
import streamlit as st
from PIL import Image, ImageOps
st.write('''
#  Emotion Detector
''')
st.write("A Image Classification Web App That Detects the Emotions Based On An Image")
file = st.file_uploader("Please Upload an image of Person With Face", type=['jpg','png'])
if file is None:
  st.text("Please upload an image file")
else:
  image = Image.open(file)
  detector = FER(mtcnn=True)
  result = detector.detect_emotions(image)
  st.write(result)
  st.image(image, use_column_width=True)

用 Emotion _ web.py 保存 Python 文件。

运行

streamlit run FILENAME.py

3f13cc62cd654a4a803ca729ad973738.png

复制 URL 并粘贴到你的浏览器中,就可以看到网页应用程序的运行情况。

·  END  ·

HAPPY LIFE

e33a1dcc1cefbf043b79f27aceda7f69.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/344044.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

封装、继承、多态、上下转型、静态绑定、动态绑定、PO/Bean/Vo/Do/Dto,dljd reyco郭

封装 “封装”这个概念,由两部分构成:一部分是封,一部分是装。“封装”这个动作,顺序应该是先装后封。 装:原本name、age、score是3个不同的、离散的数据,它们之间是有关系的是,都是用来描述一个…

东芝TLP5772光耦与SLM346兼容光耦的单通道隔离驱动器比较

东芝TLP5772光耦与SLM346兼容光耦的单通道隔离驱动器比较一般描述:SLM346是一款光兼容单通道,隔离栅驱动器,用于IGBT、MOSFET和2.5A源和2.5A汇峰值输出电流和5kVRMS加强隔离等级。SLM346可以驱动低侧和高侧功率场效应晶体管。可靠性升级超过标…

PDFPrinting.Net操作进行细粒度控制

PDFPrinting.Net操作进行细粒度控制 PDFPrinting.Net能够容易且灵活地预测完美的打印结果以及用户文件的示例性显示。可以快速浏览.NET PDF打印中最关键的元素。如果用户需要获得更详细的概述,那么他可以查看快速入门手册,甚至是现有文档的详细概述参考。…

如何发布一个 TypeScript 编写的 npm 包

本文正在参加「金石计划 . 瓜分6万现金大奖」 原文链接:www.strictmode.io/articles/bu… 作者:strictmode.io 前言 在这篇文章中,我们将使用TypeScript和Jest从头开始构建和发布一个NPM包。 我们将初始化一个项目,设置TypeS…

关于在Interceptor拦截器中使用autowired注入,但是却注入为null。引出在自动装配时,只有在ioc容器中的bean可以互相自动装配。

问题描述 在拦截器拦截登录请求,想通过从redis中取出token,判断token是否为null,进而判断是否登录。 Component public class LoginInterceptor implements HandlerInterceptor {AutowiredStringRedisTemplate redisTemplate;Overridepubli…

基于matlab的SAR图像中自动目标识别

一、前言此示例演示如何使用深度学习工具箱和并行计算工具箱™™训练基于区域的卷积神经网络 (R-CNN) 以识别大场景合成孔径雷达 (SAR) 图像中的目标。深度学习工具箱提供了一个框架,用于设计和实现具有算法、预训练模…

MyBatis_自定义映射resultMap

自定义映射resultMap 文章目录自定义映射resultMap创建数据表实体类字段名和属性名不一致(三种方式)取别名设置全局配置设置resultMap处理多对一的映射关系(三种方式)级联方式处理association分步查询处理一对多的映射关系(两种方式)collection分步查询创建数据表 复制进MySQL…

强化学习笔记-03有限马尔可夫决策过程MDP

本文是博主对《Reinforcement Learning- An introduction》的阅读笔记,不涉及内容的翻译,主要为个人的理解和思考。 前文我们了解了强化学习主要是为了实现最大化某个特定目标(收益),而学习如何通过环境进行交互。 而学…

PCI Express体系结构导读_3PCI总线的数据交换--读书笔记

前言本文为读书笔记,如有误可以指正,一块学习交流本章节主要介绍两种类型的数据传输:a- host读写pci设备的bar寄存器。b- pci设备通过DMA方式读写内存。对于PCI设备读写其他PCI设备的bar寄存器只了解3.1- pci设备bar空间的初始化3.1.1 内存域…

33复杂美:一文看懂加密算法为何物

加密算法 ,区块链底层技术的心脏究竟为何物?加密,简而言之,加密就是借助一种或多种算法将明文信息转换成密文信息,信息的接收方通过密钥对密文信息进行解密获得明文信息的过程。根据加解密的密钥是否相同,加…

C++:类和对象(下)

文章目录1 再谈构造函数1.1 构造函数体赋值1.2 初始化列表1.3 explicit关键字2 static成员2.1 概念2.2 特性3 友元3.1 友元函数&#xff08;流插入&#xff08;<<&#xff09;及流提取&#xff08;>>&#xff09;运算符重载&#xff09;3.2 友元类4 内部类5 匿名对…

使用脚本以可读的 JSON 格式显示 curl 命令输出

在我们经常调试微服务或者使用 Elasticsearch API 时&#xff0c;经常会使用curl 来进行调试。但是有时我们的输出不尽如意。显示的不是一 pretty 格式进行输出的。我们有时还必须借助于其他的一些网站工具&#xff0c;比如 Best JSON Formatter and JSON Validator: Online JS…

叮!一大波来自客户的感谢信

春风渐暖&#xff0c;美好如期&#xff0c;祝福的话语在日子的酝酿里更值得期待。神策数据走过 7 载春秋&#xff0c;描绘的大数据分析和营销科技图景在时间的打磨下清晰可见。时光沉淀经验&#xff0c;匠心兑换卓越&#xff0c;这条终点叫做「帮助中国三千万企业重构数据根基&…

类与对象(上)

类与对象(上) 1.面向过程和面向对象初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。 C是基于面向对象的&#xff0c;关注的是对象&#xff0c;将一件事情拆分成不同的对象&#xff0c;靠对象之间…

vite从零创建react-ts项目

1.创建vite-react-ts文件夹&#xff0c;初始化项目 npm init 初始化后可以看到包管理文件package.json 2.项目结构 根目录下新建index.html模板文件。以往都是放在public文件夹的&#xff0c;但是官方推荐放在根目录。这是有意而为之的&#xff1a;在开发期间 Vite 是一个服…

qt之条形码与二维码的生成

一、简介 条形码&#xff1a; 条形码(barcode)是将宽度不等的多个黑条和空白&#xff0c;按照一定的编码规则排列&#xff0c;用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条&#xff08;简称条&#xff09;和白条&#xff08;简称空&#xff09;排…

探讨接口测试以及其用例设计方法

接口测试的总结文档 第一部分&#xff1a;主要从问题出发&#xff0c;引入接口测试的相关内容并与前端测试进行简单对比&#xff0c;总结两者之前的区别与联系。但该部分只交代了怎么做和如何做&#xff1f;并没有解释为什么要做&#xff1f; 第二部分&#xff1a;主要介绍为什…

数据结构:带环单链表基础OJ练习笔记(leetcode142. 环形链表 II)(leetcode三题大串烧)

目录 一.前言 二.leetcode160. 相交链表 1.问题描述 2.问题分析与求解 三.leetcode141. 环形链表 1.问题描述 2.代码思路 3.证明分析 下一题会用到的重要小结论&#xff1a; 四.leetcode142. 环形链表 II 1.问题描述 2.问题分析与求解 Judgecycle接口&#xf…

婴儿监视器美国亚马逊CPC认证ASTM F2951标准要求?

婴儿监视器&#xff0c;又称婴儿监听器、婴儿监护器&#xff0c;英文名为( baby monitor其主要用于用于居家和婴儿的监听和护理。欧美市场上广泛使用&#xff0c;已经存在30年历史的 Baby Monitor是采用现代无线电技术应用于居家和婴儿的监听和护理的好帮手。婴儿监护器由看器(…

基于Jeecgboot前后端分离的ERP系统开发系列--出库单(1)

这次从出库单开始进行整个单据录入显示的模板&#xff0c;不再采用默认的online表单代码生成的方式&#xff0c;以满足实际的业务需要&#xff0c;当然刚开始做&#xff0c;以后还需要进行改进。 一、首先单号生成 采用系统开发里的代码编码规则&#xff0c;相应的修改增加代码…