文章目录
- 前置问题
- 问题解答
- 一、基础概念:最小生成树的定义和性质
- (1)最小生成树(Minimal Spanning Tree)的定义
- (2)最小生成树(MST)的性质
- 二、如何利用MST性质寻找最小生成树
- 三、Prim算法
- (1)Prim算法思想
- (2)Prim算法形成最小生成树的详细过程
- (3)Prim算法的C++和python实现
- 四、Dijkstra算法
- (1)和Prim算法的联系
- (2)Dijkstra算法思想
前置问题
问题解答
一、基础概念:最小生成树的定义和性质
(1)最小生成树(Minimal Spanning Tree)的定义
生成树的代价
:设 G ( V , E ) G(V,E) G(V,E)是一个无向连通网图,生成树上各边的权值之和称为生成树的代价。最小生成树
:在图 G G G所有生成树中,代价最小的生成树为最小生成树。
(2)最小生成树(MST)的性质
假设 G = ( V , E ) G=(V,E) G=(V,E)是一个无向连通网图, U U U是顶点集的一个非空子集。若 ( u , v ) (u,v) (u,v)是一条具有最小权值的边,其中 u ∈ U , v ∈ V − U u\in U,v\in V-U u∈U,v∈V−U,则必存在一棵包含边 u , v u,v u,v的最小生成树。
二、如何利用MST性质寻找最小生成树
- 找到两个点集之间最小权值的边 ( u , v ) (u,v) (u,v),让具有最小权值的 ( u , v ) (u,v) (u,v)成为最小生成树的一部分,将大于最小权值的 ( u , v ) (u,v) (u,v)删除。
接下来有两个思路:
- 从一个点出发,一次加入点形成点集
(Prim算法)
- 从边出发,将点集合并,避免形成环
(Kruskal算法)
三、Prim算法
(1)Prim算法思想
对点做操作,维护一个在最小生成树中的点的顶点集A,以及一个待处理点的顶点集B,每次找出连接这两个集合的最短边,并将其两个顶点都加入集合A,直到所有顶点都处理完毕。
抽象描述:(觉得抽象跳过)
(2)Prim算法形成最小生成树的详细过程
图注:
- 红色线段表示最小生成树
- 蓝圈表示集合 U U U,其他顶点集合为 V − U V-U V−U
- 蓝色线段表示 U U U和 V − U V-U V−U的相邻边
计算 U 中每个点和其相邻点之间的代价,找出代价最小的点 V 5 ,将 V 5 纳入 U 集合。 计算U中每个点和其相邻点之间的代价,找出代价最小的点V5,将V5纳入U集合。 计算U中每个点和其相邻点之间的代价,找出代价最小的点V5,将V5纳入U集合。
(3)Prim算法的C++和python实现
四、Dijkstra算法
(1)和Prim算法的联系
Dijkstra算法和Prim算法都是最短路径算法,主要用于求图的最短路径。
不同点在于,Dijkstra算法适用于有向图起点到其他点的最短路径,而Prim算法适用于无向图求最小生成树。它们的求解过程也略有不同。Dijkstra算法每次选择距离起点最近的点作为新的访问点,更新其他点到起点的最短距离,直到所有点都被访问。Prim算法则从一个起点开始,不断选择与已经访问过的点相连且边权最小的点,直到图上所有点都被访问。
(2)Dijkstra算法思想
算出A点到图中每一点的路径长度,选出一条最短路径:A->B
,将顶点B加入集合S。
增加了一条最短路径之后,顶点A到其他点的路径是不是有更短的路径了呢?
更新最短路径:
在A->C,A->D,A->E
中选出最短路径:A->D
,并将D顶点加入S集合。更新所有最短路径。