堆排序

news2025/1/10 17:02:22

章节目录:

    • 一、相关概述
      • 1.1 基本介绍
      • 1.2 排序思想
    • 二、基本应用
      • 2.1 步骤说明
      • 2.2 代码示例
    • 三、结束语

一、相关概述

1.1 基本介绍

  • 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序。它的最坏最好平均时间复杂度均为 O(nlogn),它属于不稳定排序(即:在排序过程中,如果两个键的值相同,那么他们的相对位置会发生变化)。
  • 堆是具有以下性质的完全二叉树:每个节点的值都大于或等于其左右孩子节点的值,称为大顶堆;每个节点的值都小于或等于其左右孩子节点的值,称为小顶堆
  • 注意 : 没有要求节点的左孩子的值和右孩子的值的大小关系。
  • 大顶堆示意图:

在这里插入图片描述

  • 小顶堆示意图:

在这里插入图片描述

  • 说明:一般升序采用大顶堆,降序采用小顶堆。

1.2 排序思想

  1. 将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点(创建一个堆 H[0……n-1]);
  2. 将其与末尾元素进行交换,此时末尾就为最大值(把堆首(最大值)和堆尾互换);
  3. 然后将剩余 n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值(把堆的尺寸缩小 1,目的是把新的数组顶端数据调整到相应位置);
  4. 如此反复执行(元素的个数逐渐减少),便能得到一个有序序列了(重复步骤 2,直到堆的尺寸为 1)。

二、基本应用

2.1 步骤说明

需求:假设将数组 {4,6,8,5,9} 要求使用堆排序法,将数组升序排序

  • 示意图

在这里插入图片描述

2.2 代码示例

public class HeapSort {

    public static void main(String[] args) {

        int[] array = new int[10];
        for (int i = 0; i < array.length; i++) {
            // 随机 100 以内的整数。
            array[i] = (int) (Math.random() * 100);
        }

        System.out.println("before:" + Arrays.toString(array));
        // before:[72, 36, 54, 10, 87, 11, 2, 81, 81, 20]

        heapSort(array);

        System.out.println("after:" + Arrays.toString(array));
        // after:[2, 10, 11, 20, 36, 54, 72, 81, 81, 87]

    }

    /**
     * 堆排序。
     *
     * @param array 数组
     */
    public static void heapSort(int[] array) {
        // 将无序序列构建成一个堆 (升序选择大顶堆 / 降序选择小顶堆)。
        for (int i = (array.length / 2 - 1); i >= 0; i--) {
            adjustHeap(array, i, array.length);
        }

        // 将堆顶元素与末尾元素交换,并反复调整结构。
        int temp;
        for (int j = (array.length - 1); j > 0; j--) {
            // 交换。
            temp = array[j];
            array[j] = array[0];
            array[0] = temp;
            adjustHeap(array, 0, j);
        }
    }

    /**
     * 将一个数组(二叉树),调整成一个大顶堆。
     *
     * @param array  待调整的数组
     * @param index  非叶子节点在数组中的索引
     * @param length 对多少个元素继续调整 (该值不断减小)
     */
    public static void adjustHeap(int[] array, int index, int length) {
        // 将当前元素值保存至临时变量。
        int temp = array[index];

        // 开始调整动作:
        // ( k = i * 2 + 1 ) : 表示 k 是 index 节点的左子节点。
        for (int k = (index * 2 + 1); k < length; k = (k * 2 + 1)) {
            // 说明左子节点的值小于右子节点的值。
            if ((k + 1 < length) && (array[k] < array[k + 1])) {
                // 指向右子节点。
                k++;
            }
            // 如果子节点大于父节点。
            if (array[k] > temp) {
                // 则把较大值赋值给当前节点。
                array[index] = array[k];
                // 索引指向k继续循环比较。
                index = k;
            } else {
                break;
            }
        }

        // 循环结束,表示已经 index 已经为父节点树的最大值。(即最顶部)
        array[index] = temp;
    }
}

三、结束语


“-------怕什么真理无穷,进一寸有一寸的欢喜。”

微信公众号搜索:饺子泡牛奶

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/337685.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(深度学习快速入门)第五章第二节:GAN变体

文章目录一&#xff1a;CycleGAN&#xff08;1&#xff09;概述&#xff08;2&#xff09;双判别器&#xff08;3&#xff09;损失函数二&#xff1a;StyleGAN&#xff08;1&#xff09;解耦表征学习&#xff08;2&#xff09;概述三&#xff1a;DCGAN一&#xff1a;CycleGAN …

4.5.8 Set接口与HashSet

文章目录1.概述2.Set集合的特点3.常用方法4.HashSet4.1 概述4.2 练习: Set相关测试一4.3 练习: Set相关测试二1.概述 Set是一个不包含重复数据的CollectionSet集合中的数据是无序的(因为Set集合没有下标)Set集合中的元素不可以重复 – 常用来给数据去重 2.Set集合的特点 数据…

排序算法学习

文章目录前言一、直接插入排序算法二、折半插入排序算法三、2路插入排序算法四、快速排序算法学习前言 算法是道路生涯的一个巨大阻碍。今日前来解决这其中之一&#xff1a;有关的排序算法&#xff0c;进行实现以及性能分析。 一、直接插入排序算法 插入排序算法实现主要思想…

Kubernetes_从Linux的cgroup配置到Kubernetes中的cgroup配置

系列文章目录 文章目录系列文章目录前言一、Linux层面的cgroup二、Kubernetes层面的cgroup driver2.1 kubelet和docker的Cgroup Driver不同导致kubelet开启失败2.1.1 命令2.1.2 演示总结前言 一、Linux层面的cgroup cgroup是控制组&#xff0c;用来控制进程对资源的分配&…

Cesium-数字仿真-你总要了解

Cesium&#xff08;专注于时空数据的实时可视化) cesium是一款三维地球开源框架&#xff08;可以多平台、跨平台使用&#xff09;cesium隶属于美国AGI公司&#xff08;Analytical Graphics Incorporation&#xff09;&#xff0c;美国通用公司宇航部的工程师创始开源 周边产…

微信小程序的优化方案之主包与分包的研究

什么是分包&#xff1f; 某些情况下&#xff0c;开发者需要将小程序划分成不同的子包&#xff0c;在构建时打包成不同的分包&#xff0c;用户在使用时按需进行加载。 在构建小程序分包项目时&#xff0c;构建会输出一个或多个分包。每个使用分包小程序必定含有一个主包。所谓的…

错误代码0xc0000001要怎么解决?如何修复错误

出现错误代码0xc0000001这个要怎么解决&#xff1f;其实这个的蓝屏问题还是非常的简单的&#xff0c;有多种方法可以实现 解决方法一 1、首先使用电脑系统自带的修复功能&#xff0c;首先长按开机键强制电脑关机。 注&#xff1a;如果有重要的资料请先提前备份好&#xff0c;…

【C++】C++11 ~ 包装器解析

&#x1f308;欢迎来到C专栏~~包装器解析 (꒪ꇴ꒪(꒪ꇴ꒪ )&#x1f423;,我是Scort目前状态&#xff1a;大三非科班啃C中&#x1f30d;博客主页&#xff1a;张小姐的猫~江湖背景快上车&#x1f698;&#xff0c;握好方向盘跟我有一起打天下嘞&#xff01;送给自己的一句鸡汤&a…

Java 内存结构解密

程序计数器 物理上被称为寄存器&#xff0c;存取速度很快。 作用 记住下一条jvm指令的执行地址。 特点 线程私有&#xff0c;和线程一块出生。 不存在内存溢出。 虚拟机栈 每个线程运行时所需要的内存&#xff0c;称为虚拟机栈。 每个栈由多个栈帧组成&#xff0c;…

C/C++ 中的宏 (macros) 与宏展开的可视化显示

C/C 中的宏 (macros) 与宏展开的可视化显示1. Replacing text macros (替换文本宏) https://en.cppreference.com/w/cpp/preprocessor/replace https://www.codecademy.com/resources/docs/cpp/macros A macro is a label defined in the source code that is replaced by it…

dll修复工具哪个比较好?修复工具介绍

DLL&#xff08;动态链接库&#xff09;是Windows操作系统中非常重要的一部分&#xff0c;它们存储了各种软件应用程序所需的公共代码和数据。然而&#xff0c;随着时间的推移&#xff0c;电脑上的DLL文件可能会因为各种原因而损坏或丢失&#xff0c;导致系统出现错误。因此&am…

PyTorch自定义损失函数实现

在机器学习中&#xff0c;损失函数是衡量预测输出与实际输出之间差异的关键组成部分。 它在模型训练中起着至关重要的作用&#xff0c;因为它通过指示模型应该改进的方向来指导优化过程。 损失函数的选择取决于具体的任务和数据类型。 在本文中&#xff0c;我们将以用于手写数字…

VHDL语言基础-时序逻辑电路-概述

目录 时序逻辑电路-概述: 时序逻辑电路: 时序逻辑电路——有记忆功能: 时序电路的分类: 按照触发器的动作特点: 按照输出信号的特点: 同步时序逻辑电路: 异步时序逻辑电路: 时序逻辑电路-概述: 数字电路按其完成逻辑功能的不同特点&#xff0c;划分为组合逻辑电路和时序…

福利篇1——嵌入式软件行业与公司汇总

前言 汇总嵌入式软件行业与公司,供参考。 文章目录 前言一、嵌入式软件行业和公司汇总1、芯片行业代表性公司2、人工智能代表性公司1)智能驾驶方向代表性公司2)机器人方向代表性公司3、消费电子领域代表性公司4、传统电子电器领域代表性公司5、国企和军工领域代表性公司6、网…

嵌入式系统那些事——aarch64 backtrace嵌入式汇编实现

0 背景 在aarch64嵌入式应用开发中&#xff0c;经常会遇到段错误(segmentation fault)&#xff0c;但是通常情况下系统报错后直接退出&#xff0c;没有异常调用打印信息&#xff0c;定位出错原因十分困难。经确认&#xff0c;该问题是由于没有设置捕获段错误&#xff0c;并调用…

推荐3dMax三维设计十大插件

3dMax是一款功能非常强大的三维设计软件&#xff0c;但无论它的功能多么强大&#xff0c;也不可能包含所有三维方面的功能&#xff0c;这时候&#xff0c;第三方插件可以很好的弥补和增强3dMax的基本功能&#xff0c;下面就给大家介绍十款非常不错的3dMax插件。 森林包&#xf…

Unsupervised Question Answering 简单综述

Unsupervised Question Answering by Cloze Translation, ACL 2019 随机从文本中抽取noun phrases或者named entity作为答案将答案部分mask掉&#xff0c;生成cloze question利用无监督翻译&#xff0c;将cloze question转化为natural question 缺点&#xff1a; 直接利用原句…

Android 进阶——Framework核心 之Binder Native成员类详解(二)

文章大纲引言一、Native 家族核心成员关系图二、Native 家族核心成员源码概述1、IInterface1.1、DECLARE_META_INTERFACE 宏1.2、IMPLEMENT_META_INTERFACE(INTERFACE, NAME) 宏1.3、sp< IInterface > BnInterface< INTERFACE >::queryLocalInterface(const String…

微前端qiankun架构 (基于vue2实现)使用教程

工具使用版本 node --> 16vue/cli --> 5 创建文件 创建文件夹qiankun-test。 使用vue脚手架创建主应用main和子应用dev 主应用 安装 qiankun: yarn add qiankun 或者 npm i qiankun -S 使用qiankun&#xff1a; 在 utils 内创建 微应用文件夹 microApp,在该文件夹…

_Linux (线程池)

文章目录线程池概述&#xff1a;线程池示例&#xff1a;代码细节代码结果展示线程池概述&#xff1a; 一种线程使用模式。 线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监督管理者分配可并发执行的任务。这避…