151、【动态规划】leetcode ——2. 01背包问题:二维数组+一维数组(C++版本)

news2024/11/27 15:35:52

题目描述

在这里插入图片描述
在这里插入图片描述
原题链接:2. 01背包问题

解题思路

(1)二维dp数组

动态规划五步曲:

(1)dp[i][j]的含义: 容量为j时,从物品1-物品i中取物品,可达到的最大价值

(2)递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]),其中dp[i - 1][j]表示不放物品i时的最大价值;j - v[i]表示给物品i留出空间,dp[i - 1][j - v[i]]表示给物品i留出空间后,放入其余物品可达到的最大价值(由于是按物品递增顺序遍历,因此为从1-i-1的物品),dp[i - 1][j - v[i]] + w[i]表示放入物品i和其余放入其余物品,可到达的最大价值。

(3)dp数组初始化: dp[0][j] = d[i][0] = 0, dp[0][j]中j >= v[i]的取w[i]

(4)遍历顺序: 从小到大,先背包后物品,或先物品后背包都可以。

(5)举例: (省略)

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;
int dp[N][N];

int main(){

    int n, m;
    int v[N], w[N];
    
    cin >> n >> m;
    for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
            // 当前物品重量大于背包容量时,不放该物品
            if(j < v[i])        dp[i][j] = dp[i - 1][j];
            // 当前物品重量小于等于背包容量时,在放该物品后和不放该物品之间选择一个最大价值
            else                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);
        }
    }
    
    cout << dp[n][m] << endl;
    
    return 0;
}

(2)优化为一维dp数组(滚动数组)

滚动数组含义:本轮所计算的数,需要用到上一轮的结果,依次类推,滚动计算。

优化成一维那就要在遍历上实现与二维相同的逻辑顺序,从而实现仅用一维就可以代替二维。

动态规划五步曲:

(1)dp[j]数组的含义: 容量为j时,装入的物品可达到的最大价值。

(2)递推公式: dp[j] = max(dp[j], dp[j - v[i]])

(3)dp数组初始化: dp[0] = 0

(4)遍历顺序: 两层for循环,先遍历物品,再遍历背包,内层按背包从大到小递减顺序遍历。
如果删除dp中的维度[i]后,还保持对j的从小到大遍历,那么此时的代码其实是等价于dp[i][j] = max(dp[i][j - 1], dp[i][j - v[i]),在一遍后续遍历中,因为j是从小到大与v[i]相减,在后续相减时,可能会出现本轮遍历中用过的数,会使之前使用过的数重复相加。

而如果以对j进行从大到小遍历,因为此时是j是从mv[i],以此顺序计算dp[j - v[i]]时,在一遍后续遍历中,都是会基于上一轮对i的遍历而进行判定,并且由于j变化而v[i]不变,在后续不会出现使用过的数重复相加。每次遍历到的j所对应dp[j - v[i]]都还没有被更新,就相当于是之前的状态dp[i - 1][j - v[i]],从而得到dp[j] = dp[j - v[i]]就等价于dp[i][j] = dp[i - 1][j - v[i]]

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;
int dp[N];

int main(){

    int n, m;
    int v[N], w[N];
    
    cin >> n >> m;
    for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i++) {
        // 从后向前遍历,表示装入一个物品后,剩余的可装入容量达到的最大价值
        for(int j = m; j >= v[i]; j--) {
            dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
        }
    }
    
    cout << dp[m] << endl;
    
    
    return 0;
}

参考文章:AcWing 2. 01背包问题(状态转移方程讲解) 、AcWing 2. 01背包问题 、动态规划:关于01背包问题,你该了解这些!(滚动数组)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/335962.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法顶级比赛汇总

可参赛的算法比赛 阿里云天池大数据竞赛 时间&#xff1a;每年各个季度很多类型都会出题&#xff08;比赛总时间大概为两个月&#xff09; 内容&#xff1a;各个类型的算法题都会出、奖金上万不等 形式&#xff1a;在线提交&#xff08;提交后在线检查结果&#xff09;、离线…

简洁易懂:源码+实战讲解Redisson并发锁及看门狗自动续期

1 缘起 有一次同事问Redisson存储的键是否为hash&#xff1f; 我当时&#xff0c;没有看Redisson的相关源码&#xff0c;只知道应用&#xff0c; 所以没有办法回答&#xff0c;于是开始看看Redisson实现的源码&#xff0c; 顺便写了一个单机Redisson测试&#xff0c; 发现Redi…

leaflet 加载CSV数据,显示图形(代码示例046)

第046个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet中加载CSV文件,将图形显示在地图上。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果; 注意如果OpenStreetMap无法加载,请加载其他来练习 文章目录 示例效果配置方式示例源代码(共74…

海思3559:BT656调试笔记

前言 海思3559a的sdk例子是没有提供BT1120和BT656视频接入的&#xff0c;但实际上硬件是可以支持接入的。不过前提是只支持逐行方式输入&#xff0c;不支持隔行视频&#xff0c;如果想输入PAL制式的隔行视频&#xff0c;请先用芯片转成逐行再接入。不知道是官方手册有意无意的忽…

弄懂自定义 Hooks 不难,改变开发认知有点不习惯

前言 我之前总结逻辑重用的时候&#xff0c;就一直在思考一个问题。 对于逻辑复用&#xff0c;render props 和 高阶组件都可以实现&#xff0c;同样官方说 Hooks 也可以实现&#xff0c;且还是在不增加额外的组件的情况下。 但是我在项目代码中&#xff0c;没有找到自定义 …

python | 第二章考试题和练习题

一、考试题 1、turtle八边形绘制 问题描述&#xff1a; 使用turtle库&#xff0c;绘制一个八边形。 参考代码&#xff1a; import turtle as t t.pensize(2) for i in range(8):t.fd(100)t.left(45) 2、turtle八角图形绘制 问题描述&#xff1a; 使用turtle库&#xff0c;…

SaleSmartly(ss客服)带你了解:缩短B2B销售周期的秘诀

缩短B2B销售周期的秘诀&#xff1a;即时聊天 关键词&#xff1a;B2B 销售&#xff1b;即时沟通&#xff1b;SaleSmartly&#xff08;ss客服&#xff09; 在B2B销售中&#xff0c;时间就是一切。在某些情况下&#xff0c;买家正在积极寻找即时解决方案&#xff0c;潜在客户以多种…

【2023unity游戏制作-mango的冒险】-开始画面API制作

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 秩沅 原创 收录于专栏&#xff1a;游戏制作 ⭐mango的冒险-开始画面制作⭐ 文章目录⭐mango的冒险-开始画面制作⭐&#x1f468;‍&…

EasyCVR视频云存储的架构解析与Sharelist云存挂载方法介绍

一、什么是视频云存储&#xff1f; 视频云存储主要用于为上层应用提供视频文件、结构化信息、事件信息的相关服务。云存储节点分为数据文件存储节点和结构化数据存储节点。数据文件存储节点主要用于视频、图片的存储。结构化数据存储节点用于存储结构化数据并提供相关服务。 …

【学习记录】PCA主成分分析 SVD奇异值分解

在看MSC-VO代码的过程中&#xff0c;大量出现了奇异值分解的内容&#xff0c;本身对这部分了解不多&#xff0c;这里补一下课&#xff0c;参考b站up主小旭学长的视频&#xff0c;链接为&#xff1a;PCA主成分分析和SVD主成分分析 PCA主成分分析 PCA根本目的在于让数据在损失尽…

机器学习笔记之生成模型综述(三)生成模型的表示、推断、学习任务

机器学习笔记之生成模型综述——表示、推断、学习任务引言生成模型的表示任务从形状的角度观察生成模型的表示任务从概率分布的角度观察生成模型的表示任务生成模型的推断任务生成模型的学习任务引言 上一节介绍了从监督学习、无监督学习任务的角度介绍了经典模型。本节将从表…

概率论面试题1:玫瑰花

概率论面试题 1. 一个活动&#xff0c;n个女生手里拿着长短不一的玫瑰花&#xff0c;无序的排成一排&#xff0c;一个男生从头走到尾&#xff0c;试图拿更长的玫瑰花&#xff0c;一旦拿了一朵就不能再拿其他的&#xff0c;错过了就不能回头&#xff0c;问最好的策略&#xff1…

3年自动化测试这水平?我还不如去招应届生

公司前段缺人&#xff0c;也面了不少测试&#xff0c;结果竟然没有一个合适的。一开始瞄准的就是中级的水准&#xff0c;也没指望来大牛&#xff0c;提供的薪资在10-20k&#xff0c;面试的人很多&#xff0c;但平均水平很让人失望。看简历很多都是3年工作经验&#xff0c;但面试…

什么是响应性?

响应性&#xff1a; 这个术语在今天的各种编程讨论中经常出现&#xff0c;但人们说它的时候究竟是想表达什么意思呢&#xff1f;本质上&#xff0c;响应性是一种可以使我们声明式地处理变化的编程范式。一个经常被拿来当作典型例子的用例即是 Excel 表格&#xff1a; 这里单元…

angular相关知识点总结

创建 angualr 组件和传值 angular组件其实就是个xxx.component.ts,本质还是ts文件一个html文件 1.创建组件&#xff1a;在Angular中&#xff0c;可以使用命令行工具ng generate component创建一个新组件。例如&#xff1a; ng generate component my-component这将创建一个名…

Ubuntu 系统下Docker安装与使用

Ubuntu 系统下Docker安装与使用Docker安装与使用Docker安装安装环境准备工作系统要求卸载旧版本Ubuntu 14.04 可选内核模块Ubuntu 16.04 使用 APT 安装安装 Docker CE使用脚本自动安装启动 Docker CE建立 docker 用户组测试 Docker 是否安装正确镜像加速Docker使用拉取镜像创建…

SPSS数据分析软件的安装与介绍(附网盘链接)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

SAP COPA 获利能力分析深度解析

一、获利分析配置及相关值概述 二、配置&#xff1a;组织结构 2.1 定义经营范围-KEP8 2.2 维护经营关注点-KEA0 2.3 获利能力分析类型解析 2.4 控制范围分配给经营范围-KEKK 三、配置&#xff1a;数据结构-KEA0 3.1 特征字段 3.1.1 特征字段类别 3.1.2 维护特征字段-K…

分类预测 | Matlab实现SSA-RF和RF麻雀算法优化随机森林和随机森林多特征分类预测

分类预测 |Matlab实现SSA-RF和RF麻雀算法优化随机森林和随机森林多特征分类预测 目录分类预测 |Matlab实现SSA-RF和RF麻雀算法优化随机森林和随机森林多特征分类预测分类效果基本介绍模型描述程序设计参考资料分类效果 基本介绍 Matlab实现SSA-RF和RF麻雀算法优化随机森林和随机…

C++学习笔记(四)

组合、继承。委托&#xff08;类与类之间的关系&#xff09; 复合 queue类里有一个deque&#xff0c;那么他们的关系叫做复合。右上角的图表明复合的概念。上图的特例表明&#xff0c;queue中的功能都是通过调用c进行实现&#xff08;adapter&#xff09;。 复合关系下的构造和…