函数栈帧的创建和销毁——“C”

news2024/11/28 22:56:31

各位CSDN的uu们你们好呀,今天小雅兰来为大家介绍一个知识点——函数栈帧的创建和销毁。其实这个知识点,我们很早之前就要讲,但是因为我的一系列原因,才一直拖到了现在,那么,话不多说,让我们一起进入函数栈帧的世界吧

我们学习了前面这么多内容,不由得会想起几个问题:

  • 局部变量是如何创建的?
  • 为什么局部变量不初始化内容是随机的?
  • 函数调用时参数是如何传递的?传参的顺序是怎样的?
  • 函数调用是怎么做的?
  • 函数的形参和实参分别是怎样实例化的?
  • 形参和实参的关系是什么?
  • 函数的返回值是如何带回的? 

带着这一肚子的疑惑,就有了今天的函数栈帧的创建和销毁了。


寄存器

什么是函数栈帧

什么是栈

解析函数栈帧的创建和销毁


首先,我还得给大家拓展一个知识点——寄存器

寄存器的功能是存储二进制代码,它是由具有存储功能的触发器组合起来构成的。一个触发器可以存储1位二进制代码,故存放n位二进制代码的寄存器,需用n个触发器来构成

按照功能的不同,可将寄存器分为基本寄存器移位寄存器两大类。

基本寄存器只能并行送入数据,也只能并行输出。

移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输出,还可以并行输入、串行输出,或串行输入、并行输出,十分灵活,用途也很广。

这边介绍一下寄存器的基本含义、基本概念、结构、工作原理、类型、存放代码满足条件、寄存器组织、寄存器寻址

 

 

 相关寄存器和汇编指令

 相关寄存器

 

  •  eax:通用寄存器,保留临时数据,常用于返回值
  •  ebx:通用寄存器,保留临时数据
  •  ebp:栈底寄存器
  •  esp:栈顶寄存器
  •  eip:指令寄存器,保存当前指令的下一条指令的地址

 

相关汇编命令

  •  mov:数据转移指令
  •  push:数据入栈,同时esp栈顶寄存器也要发生改变
  •  pop:数据弹出至指定位置,同时esp栈顶寄存器也要发生改变
  •  sub:减法命令
  •  add:加法命令
  •  call:函数调用,
  •       1.压入返回地址
  •       2.转入目标函数
  •  jump:通过修改eip,转入目标函数,进行调用
  •  ret:恢复返回地址,压入eip,类似pop eip命令

 什么是函数栈帧

我们在写C语言代码的时候,经常会把一个独立的功能抽象为函数,所以C程序是以函数为基本单位的。

那函数是如何调用的?

函数的返回值又是如何带会的?

函数参数是如何传递的?

这些问题都和函数栈帧有关系。

函数栈帧(stack frame)就是函数调用过程中在程序的调用栈(call stack)所开辟的空间,这些空间是用来存放:

   

    函数参数和函数返回值

   

    临时变量(包括函数的非静态的局部变量以及编译器自动生产的其他临时变量)

   

    保存上下文信息(包括在函数调用前后需要保持不变的寄存器)。

看到这里,我们就必须还想到一个问题——什么是栈? 


什么是栈

栈(stack)是现代计算机程序里最为重要的概念之一,几乎每一个程序都使用了栈,没有栈就没有函数,没有局部变量,也就没有我们如今看到的所有的计算机语言。

在经典的计算机科学中,栈被定义为一种特殊的容器,用户可以将数据压入栈中(入栈,push),也可以将已经压入栈中的数据弹出(出栈,pop),但是栈这个容器必须遵守一条规则:先入栈的数据后出栈(First In Last Out, FIFO)。就像叠成一叠的术,先叠上去的书在最下面,因此要最后才能取出。

在计算机系统中,栈则是一个具有以上属性的动态内存区域。程序可以将数据压入栈中,也可以将数据从栈顶弹出。压栈操作使得栈增大,而弹出操作使得栈减小。

在经典的操作系统中,栈总是向下增长(由高地址向低地址)的。 在我们常见的i386或者x86-64下,栈顶由成为 esp 的寄存器进行定位的。

在了解了这些准备工作之后,我们就可以进入我们的正题啦——解析函数栈帧的创建和销毁 


解析函数栈帧的创建和销毁

首先我们达成一些预备知识才能有效的帮助我们理解,函数栈帧的创建和销毁。

 1. 每一次函数调用,都要为本次函数调用开辟空间,就是函数栈帧的空间。

 2. 这块空间的维护是使用了2个寄存器: esp 和 ebp ebp 记录的是栈底的地址, esp 记录的是栈顶的地址。

 3. 函数栈帧的创建和销毁过程,在不同的编译器上实现的方法大同小异,本次演示以VS2010为例。  

函数的调用堆栈

#include<stdio.h>
int Add(int x, int y)
{
	int z = 0;
	z = x + y;
	return z;
}
int main()
{
	int a = 3;
	int b = 5;
	int ret = 0;
	ret = Add(a, b);
	printf("%d\n", ret);
	return 0;
}

 我们可以看到,main函数也确实被调用了

在VS2010中,main函数也是被其他函数调用的   __tmainCRTStartup  这个函数又是被调用的  mainCRTStartup

即,mainCRTStartup调用了__tmainCRTStartup,__tmainCRTStartup又调用了main函数

 

 现在转到我们的反汇编,把这个显示符号名的勾勾去掉,这样方便观察

 

 

 压栈(push)操作

 mov操作,表示把esp的值给ebp

 sub操作,表示esp的值减去0E4h

0E4h是一个十六进制数字,转为十进制为228

经过sub操作,esp的值就变了

 

 然后,esp就指向上面开辟的某一块空间了

 

 这一块空间,就是为我们的main函数预开辟的一块空间了,也就是main函数的栈帧

然后再是三个push操作,push了ebx、esi、edi

 

 

 再是lea操作,lea表示Load Effective Address,是为加载有效地址

 把[ebp+FFFFFF1Ch]的值加载到edi中,但是这个值不好观察,那我们还得把我们之前取消的显示符号名给勾上

 

 

这三个操作的意思是,把刚刚main函数的栈帧全部初始化为CCCCCCCC

dword的意思是double word(双字),一个字是两个字节,双字就是四个字节

 

 走了这么半天,竟然还没有执行一行有效的代码!!!

#include<stdio.h>
int Add(int x, int y)
{
	int z = 0;
	z = x + y;
	return z;
}
int main()
{
	int a = 10;
	int b = 20;
	int ret = 0;
	ret = Add(a, b);
	printf("%d\n", ret);
	return 0;
}

 

 这就是我们的变量为什么要初始化的原因,如果不初始化的话,内存里面放的是一个随机值

 

接下来,就是调用函数

 

 

这几个动作就是在传参

 

 我们会发现,这个Add函数的指令和我们的main函数开始的指令几乎是一样的,这实际上就是在准备栈帧

 

 

其实初始化并不止这么多次,把33h这个十六进制数字换成十进制,是多少次就初始化多少次CCCCCCCC

 

 

通过画图,我们可以清楚地知道,并没有给形参创建空间,这也验证了我们之前的结论:实参传递给形参的时候,形参是实参的一份临时拷贝,改变形参是不会影响实参的

把[ebp-8]的值放到eax这个寄存器中

 

 

 

 


好啦,小雅兰今天的函数栈帧的创建和销毁的内容就到这里了,总体来说,我觉得这个内容比较地抽象,难度也是很大的,对于我们这种初学者来说,但是,不奢求一遍就把它看懂,但求每多看一遍,收获的知识点就多一点点,这样我就心满意足啦!!!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/335539.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(C00036)基于SSM+VUE前后端分离的物流管理系统

基于SSMVUE前后端分离的物流管理系统项目简介项目获取开发环境项目技术运行截图项目简介 本基于SSMVUE前后端分离的物流管理系统&#xff0c;统一管理车辆、顾客、司机、订单等信息&#xff0c;方便企业对物流信息的管理。本系统通过对用户划分为三个角色进行实现&#xff0c;…

【内网安全-横向移动】基于SMB协议-PsExec

目录 一、SMB协议 1、简述&#xff1a; 2、工具&#xff1a; 二、PsExec 1、简述&#xff1a; 2、使用&#xff1a; 1、常用参数&#xff1a; 2、情况&#xff1a; 3、插件 三、PsExec&#xff08;impacket&#xff09; 1、简述&#xff1a; 1、impacket&#xff1…

C++-类和对象(上)

类和对象&#xff08;上&#xff09;一&#xff0c;构造函数1&#xff0c;概念2&#xff0c;特性二&#xff0c;析构函数1&#xff0c;概念2&#xff0c;特性三&#xff0c;拷贝构造1&#xff0c;概念2&#xff0c;特性四&#xff0c;运算符重载1&#xff0c;概念2&#xff0c;…

联合培养博士经历对于国内就业有优势吗?

2023年国家留学基金委&#xff08;CSC&#xff09;申请在即&#xff0c;很多在读博士在关心申报的同时&#xff0c;也对联培经历能否有助于国内就业心中存疑&#xff0c;故此知识人网小编重点解答此问题。之前&#xff0c;我们在“CSC联合培养-国内在读博士出国的绝佳选择”一文…

【论文解读|KDD2020】AKT. Context-Aware Attentive Knowledge Tracing

文章目录摘要1 引言1.1 贡献3 模型3.4 基于Rasch模型的嵌入摘要 知识追踪(KT)是指根据学习者在教育应用中的过去表现预测未来学习者表现的问题。KT最近使用灵活的基于深度神经网络的模型的发展在这一任务中表现出色。然而&#xff0c;这些模型通常提供有限的可解释性&#xff…

HTML画布与SVG(Canvas vs. SVG)

目录 画布(Canvas) 什么是 Canvas&#xff1f; 创建 Canvas 元素 通过 JavaScript 来绘制 理解坐标 更多 Canvas 实例 实例 - 线条 实例 - 圆形 实例 - 渐变 实例 - 图像 相关页面 SVG (Scalable Vector Graphics) 什么是 SVG&#xff1f; SVG 的优势 浏览器支持…

Springboot+Vue java毕业论文选题管理系统

在分析并得出使用者对程序的功能要求时&#xff0c;就可以进行程序设计了。如图展示的就是管理员功能结构图。 系统实现前端技术&#xff1a;nodejsvueelementui 前端&#xff1a;HTML5,CSS3、JavaScript、VUE 系统分为不同的层次&#xff1a;视图层&#xff08;vue页面&#…

bert处理超过512的长文本(强制改变位置编码position_embeddings )

最近在做 NER 任务的时候&#xff0c;需要处理最长为 1024 个字符的文本&#xff0c;BERT 模型最长的位置编码是 512 个字符&#xff0c;超过512的部分没有位置编码可以用了 处理措施&#xff1a; 将bert的位置编码认为修改成&#xff08;11024&#xff09;&#xff0c;前512…

【C++】类和对象(二)

目录 一、默认成员函数 二、构造函数 1、构造函数概念 2、构造函数编写 3、默认构造函数 4、内置类型成员的补丁 三、析构函数 1、析构函数概念 2、析构函数编写 3、默认析构函数 四、拷贝构造函数 1、拷贝构造函数概念及编写 2、默认拷贝构造函数 3、拷贝构造…

大学物理·第15章【量子物理】

黑体 斯特藩玻耳兹曼定律 维恩定律 光电效应 在光照射下 &#xff0c;电子从金属表面逸出的现象&#xff0c;叫光电效应. 逸出的电子&#xff0c;叫光电子 经典理论&#xff1a; 光电流值与入射光强成正比截止频率&#xff08;红限&#xff09;v0对某种金属来说&#xff0c;只有…

关于 NodeJs 处理超长字符串问题的分析

问题&#xff1a;对于超大的 string V8不能支持 问题背景 在 Nodejs 计算服务中&#xff0c;对端上上报的内存信息二进制数据进行预处理缓存时&#xff0c;遇到了一个奇怪的报错&#xff1a;RangeError: Invalid string length 。根据该报错信息&#xff0c;查找得知是字符串长…

二叉搜索树(查找,插入,删除)

目录 1.概念 2.性质 3.二叉搜索树的操作 1.查找 2.插入 3.删除(难点) 1.概念 二叉搜索树又称二叉排序树.利用中序遍历它就是一个有顺序的一组数. 2.性质 1.若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 2.若它的右子树不为空,则右子树上所有节点的值都…

代码解析工具cpg

cpg 是一个跨语言代码属性图解析工具&#xff0c;它目前支持C/C (C17), Java (Java 13)并且对Go, LLVM, python, TypeScript也有支持&#xff0c;在这个项目的根目录下: cpg-core为cpg解析模块的核心功能&#xff0c;主要包括将代码解析为图&#xff0c;core模块只包括对C/C/Ja…

Flink 滚动窗口、滑动窗口详解

1 滚动窗口(Tumbling Windows) 滚动窗口有固定的大小&#xff0c;是一种对数据进行“均匀切片”的划分方式。窗口之间没有重叠&#xff0c;也不会有间隔&#xff0c;是“首尾相接”的状态。如果我们把多个窗口的创建&#xff0c;看作一个窗口的运动&#xff0c;那就好像它在不…

大坝安全监测系统:水库“守坝人”!

一、项目背景 随着社会经济的迅速发展&#xff0c;我国水资源利用率越来越高&#xff0c;各类水利水电工规模进一步扩大。在抗洪救灾、水利发电等方面带来巨大的经济和社会效益。但受多种因素影响&#xff0c;大坝的安全问题日益严重。大量工程实践证明&#xff0c;为保证大坝…

uniapp 离线本地打包

uniapp打包教程地址 https://nativesupport.dcloud.net.cn/AppDocs/usesdk/android.html点击查看 需要的环境&#xff1a; java (1.8)离线SDK(上面的连接下载即可)Android Studio&#xff08;同上&#xff09; 配置环境变量 依次点击“计算机”&#xff0d;“属性”&#…

通过 指针 引用 多维数组 详解

目录 一&#xff1a;回顾多维数组地址知识 二&#xff1a;二维数组的有关指针 三&#xff1a;指向数组元素的指针变量 四&#xff1a;用指向数组的指针作为函数参数 首先简单来讲&#xff0c;指针变量可以指向一维数组中的元素&#xff0c;也可以指向多维数组中的元素。下面…

Java线程中:Runnable和Callable的区别和联系

点个关注&#xff0c;必回关 文章目录一、Java提供了三种创建线程的方法1.继承Thread2.实现Runnable接口3.通过Callable和Future创建线程二、Runnable和Callable的区别和联系1.定义接口&#xff08;1&#xff09; Runnable&#xff08;2&#xff09;Callable&#xff08;3&…

onnx-graphsurgeon----ONNX计算图修改神器

0. 简介 作为深度学习用户&#xff0c;经常会听到ONNX、TensorRT等一系列常用的文件保存格式。而对于ONNX而言&#xff0c;经常我们会发现在利用TensorRT部署到NVIDIA显卡上时&#xff0c;onnx模型的计算图不好修改&#xff0c;在以前的操作中很多时候大佬是将onnx转换成ncnn的…

vscode中安装python运行调试环境

在运行代码之前&#xff0c;需要到微软商店下载安装python环境&#xff0c;35m&#xff0c;都是自动的。 1、安装python 的extensions插件。 ctrlshiftx 输入 python 后点击 install 按钮。 2、新建文件夹spider文件夹。 3、在新建文件夹spider下新建文件spider.py源代码。…