110.平衡二叉树
力扣题目链接
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
返回 false 。
- 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
- 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:
var isBalanced=function(root){
if(root===null) return true;
if(Math.abs(getHeight(root.left)-getHeight(root.right))>1) return false;
return isBalanced(root.left)&&isBalanced(root.right);
}
var getHeight=function(root){
if(root===null) return 0;
return Math.max(getHeight(root.left),getHeight(root.right))+1;
}
// 代码随想录
// 递归法:
var isBalanced = function(root) {
//还是用递归三部曲 + 后序遍历 左右中 当前左子树右子树高度相差大于1就返回-1
// 1. 确定递归函数参数以及返回值
const getDepth = function(node) {
// 2. 确定递归函数终止条件
if(node === null) return 0;
// 3. 确定单层递归逻辑
let leftDepth = getDepth(node.left); //左子树高度
// 当判定左子树不为平衡二叉树时,即可直接返回-1
if(leftDepth === -1) return -1;
let rightDepth = getDepth(node.right); //右子树高度
// 当判定右子树不为平衡二叉树时,即可直接返回-1
if(rightDepth === -1) return -1;
if(Math.abs(leftDepth - rightDepth) > 1) {
return -1;
} else {
return 1 + Math.max(leftDepth, rightDepth);
}
}
return !(getDepth(root) === -1);
};
// 迭代法:
// 获取当前节点的高度
//getHeight函数的作用是获取当前节点的高度
var getHeight = function (curNode) {
let queue = [];
if (curNode !== null) queue.push(curNode); // 压入当前元素
let depth = 0, res = 0;
while (queue.length) {
let node = queue[queue.length - 1]; // 取出栈顶
if (node !== null) {
queue.pop();
queue.push(node); // 中
queue.push(null);
depth++;
node.right && queue.push(node.right); // 右
node.left && queue.push(node.left); // 左
} else {
queue.pop();
node = queue[queue.length - 1];
queue.pop();
depth--;
}
res = res > depth ? res : depth;
}
return res;
}
var isBalanced = function (root) {
if (root === null) return true;
let queue = [root];
while (queue.length) {
let node = queue[queue.length - 1]; // 取出栈顶
queue.pop();
if (Math.abs(getHeight(node.left) - getHeight(node.right)) > 1) {
return false;
}
node.right && queue.push(node.right);
node.left && queue.push(node.left);
}
return true;
};
257. 二叉树的所有路径
力扣题目链接(opens new window)
给定一个二叉树,返回所有从根节点到叶子节点的路径。
说明: 叶子节点是指没有子节点的节点。
var binaryTreePaths = function(root) {
if(root===null) return [];
if(root.left===null&&root.right===null) return [root.val.toString()];
let left_paths=binaryTreePaths(root.left);
let right_paths=binaryTreePaths(root.right);
let paths=[];
for(let path of left_paths){
paths.push(root.val.toString()+"->"+path);
}
for(let path of right_paths){
paths.push(root.val.toString()+"->"+path);
}
return paths;
}
// 代码随想录
// 递归法
var binaryTreePaths = function(root) {
//递归遍历+递归三部曲
let res = [];
//1. 确定递归函数 函数参数
const getPath = function(node,curPath) {
//2. 确定终止条件,到叶子节点就终止
if(node.left === null && node.right === null) {
curPath += node.val;
res.push(curPath);
return;
}
//3. 确定单层递归逻辑
curPath += node.val + '->';
node.left && getPath(node.left, curPath);
node.right && getPath(node.right, curPath);
}
getPath(root, '');
return res;
};
// 迭代法:
var binaryTreePaths = function(root) {
if (!root) return [];
const stack = [root], paths = [''], res = [];
while (stack.length) {
const node = stack.pop();
let path = paths.pop();
if (!node.left && !node.right) { // 到叶子节点终止, 添加路径到结果中
res.push(path + node.val);
continue;
}
path += node.val + '->';
if (node.right) { // 右节点存在
stack.push(node.right);
paths.push(path);
}
if (node.left) { // 左节点存在
stack.push(node.left);
paths.push(path);
}
}
return res;
};
-
#404.左叶子之和
力扣题目链接
计算给定二叉树的所有左叶子之和。
var sumOfLeftLeaves=function(root){
if(root===null) return 0;
let sum=0;
if(root.left!==null&&root.left.left===null&&root.left.right===null){
sum+=root.left.val;
}
sum+=sumOfLeftLeaves(root.left);
sum+=sumOfLeftLeaves(root.right);
return sum;
}
// 代码随想录
// 递归法
var sumOfLeftLeaves = function(root) {
//采用后序遍历 递归遍历
// 1. 确定递归函数参数
const nodesSum = function(node) {
// 2. 确定终止条件
if(node === null) {
return 0;
}
let leftValue = nodesSum(node.left);
let rightValue = nodesSum(node.right);
// 3. 单层递归逻辑
let midValue = 0;
if(node.left && node.left.left === null && node.left.right === null) {
midValue = node.left.val;
}
let sum = midValue + leftValue + rightValue;
return sum;
}
return nodesSum(root);
};
// 迭代法
var sumOfLeftLeaves = function(root) {
//采用层序遍历
if(root === null) {
return null;
}
let queue = [];
let sum = 0;
queue.push(root);
while(queue.length) {
let node = queue.shift();
if(node.left !== null && node.left.left === null && node.left.right === null) {
sum+=node.left.val;
}
node.left && queue.push(node.left);
node.right && queue.push(node.right);
}
return sum;
};