.NET 7 的 AOT 到底能不能扛反编译?

news2025/1/7 10:42:06

一:背景

1.讲故事

在B站,公众号上发了一篇 AOT 的文章后,没想到反响还是挺大的,都称赞这个东西能抗反编译,可以让破解难度极大提高,可能有很多朋友对逆向不了解,以为用 ILSpy,Reflector,DnSpy 这些工具打不开就觉得很安全,其实不然,在 OllyDbg,IDA,WinDBG 这些逆向工具面前一样是裸奔。

既然大家都很感兴趣,那这篇就和大家聊一聊。

二:几个例子

1. 动态修改程序数据

修改程序数据在逆向中再正常不过了,由于目前的 AOT 只能发布成 x64 ,这里就用 WinDbg 做下演示,首先看下例子。


    internal class Program
    {
        static void Main(string[] args)
        {
            while (true)
            {
                Console.WriteLine("hello world!");
                Thread.Sleep(1000);
            }
        }
    }

程序在不断的输出,接下来我们将 hello world 中的 world 给去掉,操作手法非常简单,先内存搜索找到 hello world,然后修改 length=5 即可。


0:005> lm
start             end                 module name
00007ff7`95b70000 00007ff7`95e5d000   ConsoleApp1 C (private pdb symbols)  

0:005> s-u 00007ff7`95b70000 L?0x00007ff7`95e5d000 hello
00007ff7`95e1c41c  0068 0065 006c 006c 006f 0020 0077 006f  h.e.l.l.o. .w.o.

0:000> dp 00007ff795e1c41c-0x4 L1
00007ff7`95e1c418  00650068`0000000c

0:000> eq 00007ff7`95e1c418 00650068`00000005
0:000> g

2. 获取程序托管堆

AOT 再怎么牛,它终还是个托管程序,既然是托管程序自然就有托管堆,托管堆中就有所有的托管数据,玩过 SOS.dll 朋友应该知道,用 !eeheap -gc 就能把托管堆给显示出来,比如下面这样。


0:022> !eeheap -gc
Number of GC Heaps: 1
generation 0 starts at 0x000002414D891030
generation 1 starts at 0x000002414D891018
generation 2 starts at 0x000002414D891000
ephemeral segment allocation context: none
         segment             begin         allocated         committed    allocated size    committed size
000002414D890000  000002414D891000  000002414D8D1FE8  000002414D8D2000  0x40fe8(266216)  0x41000(266240)
Large object heap starts at 0x000002415D891000
         segment             begin         allocated         committed    allocated size    committed size
000002415D890000  000002415D891000  000002415D891018  000002415D892000  0x18(24)  0x1000(4096)
Pinned object heap starts at 0x0000024165891000
0000024165890000  0000024165891000  0000024165899C10  00000241658A2000  0x8c10(35856)  0x11000(69632)
Total Allocated Size:              Size: 0x49c10 (302096) bytes.
Total Committed Size:              Size: 0x42000 (270336) bytes.
------------------------------
GC Allocated Heap Size:    Size: 0x49c10 (302096) bytes.
GC Committed Heap Size:    Size: 0x42000 (270336) bytes.

虽然目前的 AOT 不支持 SOS 扩展,无法显示出托管堆,但一点关系都没有,SOS 是通过 DataAccess 去挖的,大不来我手工挖一下就好了哈,接下来就是怎么挖的问题了,熟悉 CLR 的朋友应该知道所谓的托管堆在内部用的是 generation_table[] 一维数据来维护的,以 的方式来划分,代的落地是用 heap_segment 来表示的, 参考代码如下:


generation gc_heap::generation_table [total_generation_count];

enum gc_generation_num
{
    // small object heap includes generations [0-2], which are "generations" in the general sense.
    soh_gen0 = 0,
    soh_gen1 = 1,
    soh_gen2 = 2,
    max_generation = soh_gen2,

    // large object heap, technically not a generation, but it is convenient to represent it as such
    loh_generation = 3,

    // pinned heap, a separate generation for the same reasons as loh
    poh_generation = 4,

    uoh_start_generation = loh_generation,

    // number of ephemeral generations
    ephemeral_generation_count = max_generation,

    // number of all generations
    total_generation_count = poh_generation + 1
};

接下来用 x 命令看下数组内容,代码如下:


0:000> x ConsoleApp1!WKS::gc_heap::generation_table
00007ff7`95e25010 ConsoleApp1!WKS::gc_heap::generation_table = class WKS::generation [5]

0:000> dx -r1 (*((ConsoleApp1!WKS::generation (*)[5])0x7ff795e25010))
(*((ConsoleApp1!WKS::generation (*)[5])0x7ff795e25010))                 [Type: WKS::generation [5]]
    [0]              [Type: WKS::generation]
    ...
    [4]              [Type: WKS::generation]

0:000> dx -r1 (*((ConsoleApp1!WKS::generation *)0x7ff795e25010))
(*((ConsoleApp1!WKS::generation *)0x7ff795e25010))                 [Type: WKS::generation]
    [+0x038] start_segment    : 0x25100000000 [Type: WKS::heap_segment *]
    [+0x040] allocation_start : 0x25100001030 : 0x38 [Type: unsigned char *]
    [+0x048] allocation_segment : 0x25100000000 [Type: WKS::heap_segment *]
    [+0x0d0] allocation_size  : 0x0 [Type: unsigned __int64]
    [+0x100] gen_num          : 0 [Type: int]
    ...

0:000> dx -r1 ((ConsoleApp1!WKS::heap_segment *)0x25100000000)
((ConsoleApp1!WKS::heap_segment *)0x25100000000)                 : 0x25100000000 [Type: WKS::heap_segment *]
    [+0x000] allocated        : 0x25100001048 : 0x90 [Type: unsigned char *]
    [+0x008] committed        : 0x25100012000 : Unable to read memory at Address 0x25100012000 [Type: unsigned char *]
    [+0x010] reserved         : 0x25110000000 : 0x18 [Type: unsigned char *]
    [+0x018] used             : 0x25100009fe0 : 0x0 [Type: unsigned char *]
    [+0x020] mem              : 0x25100001000 : 0x38 [Type: unsigned char *]
    [+0x028] flags            : 0x0 [Type: unsigned __int64]
    [+0x030] next             : 0x0 [Type: WKS::heap_segment *]
    ...

上面的这些字段就描述出了 !eeheap -gc 的结果,接下来想挖什么,提取什么我就不过多介绍了。

3. 提取托管线程列表

提取 托管线程 列表也是非常重要的, 它能指示出很多信息,一般用 !t 命令就能显示,输出如下:


0:022> !t
ThreadCount:      17
UnstartedThread:  0
BackgroundThread: 6
PendingThread:    0
DeadThread:       0
Hosted Runtime:   no
                                                                                                            Lock  
 DBG   ID     OSID ThreadOBJ           State GC Mode     GC Alloc Context                  Domain           Count Apt Exception
   0    1     4128 000002414BDB8C70    2a020 Preemptive  000002414D8C6108:000002414D8C8000 000002414bdaf8f0 -00001 MTA 
   6    2     4458 000002414BDE5EB0    2b220 Preemptive  0000000000000000:0000000000000000 000002414bdaf8f0 -00001 MTA (Finalizer) 
   7    4     23e8 000002416DDB15C0  102b220 Preemptive  000002414D8C9250:000002414D8CA000 000002414bdaf8f0 -00001 MTA (Threadpool Worker) 
   ...
  20   17     50a8 000002416DE43DD0  102b220 Preemptive  000002414D8BC2D0:000002414D8BDFD0 000002414bdaf8f0 -00001 MTA (Threadpool Worker) 
  21   18     57d4 000002416DE628E0  8029220 Preemptive  000002414D8CC2A8:000002414D8CE000 000002414bdaf8f0 -00001 MTA (Threadpool Completion Port) 

既然目前的 SOS 不支持,同样可以手工到 CLR 中去挖,熟悉的朋友应该知道 !t 的数据源来自于 ThreadStore::s_pThreadStore 下的 m_ThreadList 集合,它以链表的形式串联了每个线程的 LinkPtr 字段,但可惜的是,在 AOT 中,这一块已经重写了,由 g_pTheRuntimeInstance 全局变量下的 m_ThreadList 来维护了。

为了方便观察,多生成几个 Thread。


        static void Main(string[] args)
        {
            Debugger.Break();

            var tasks = Enumerable.Range(0, 10).Select(m => new Thread(() =>
            {
                Console.WriteLine($"tid={Thread.CurrentThread.ManagedThreadId} 已执行!");
                Console.ReadLine();
            }));

            foreach (var item in tasks)
            {
                item.Start();
            }

            Console.ReadLine();
        }

程序跑起来后,深挖 g_pTheRuntimeInstance 全局变量即可。


0:015> x ConsoleApp1!g_pTheRuntimeInstance
00007ff7`0155ee20 ConsoleApp1!g_pTheRuntimeInstance = 0x00000291`cb5b9300
0:015> dx -r1 ((ConsoleApp1!RuntimeInstance *)0x291cb5b9300)
((ConsoleApp1!RuntimeInstance *)0x291cb5b9300)                 : 0x291cb5b9300 [Type: RuntimeInstance *]
    [+0x000] m_pThreadStore   : 0x291cb5b9390 [Type: ThreadStore *]
    ...
0:015> dx -r1 ((ConsoleApp1!ThreadStore *)0x291cb5b9390)
((ConsoleApp1!ThreadStore *)0x291cb5b9390)                 : 0x291cb5b9390 [Type: ThreadStore *]
    [+0x000] m_ThreadList     [Type: SList<Thread,DefaultSListTraits<Thread,DoNothingFailFastPolicy> >]
    [+0x008] m_pRuntimeInstance : 0x291cb5b9300 [Type: RuntimeInstance *]
    [+0x010] m_Lock           [Type: ReaderWriterLock]
0:015> dx -r1 (*((ConsoleApp1!SList<Thread,DefaultSListTraits<Thread,DoNothingFailFastPolicy> > *)0x291cb5b9390))
(*((ConsoleApp1!SList<Thread,DefaultSListTraits<Thread,DoNothingFailFastPolicy> > *)0x291cb5b9390))                 [Type: SList<Thread,DefaultSListTraits<Thread,DoNothingFailFastPolicy> >]
    [+0x000] m_pHead          : 0x291ed366240 [Type: Thread *]
0:015> dx -r1 ((ConsoleApp1!Thread *)0x291ed366240)
((ConsoleApp1!Thread *)0x291ed366240)                 : 0x291ed366240 [Type: Thread *]
    ...
    [+0x058] m_pNext          : 0x291cb6aeb60 [Type: Thread *]
    [+0x060] m_hPalThread     : 0x204 [Type: void *]
    [+0x068] m_ppvHijackedReturnAddressLocation : 0x0 [Type: void * *]
    [+0x070] m_pvHijackedReturnAddress : 0x0 [Type: void *]
    [+0x078] m_uHijackedReturnValueFlags : 0x0 [Type: unsigned __int64]
    [+0x080] m_pExInfoStackHead : 0x0 [Type: ExInfo *]
    [+0x088] m_threadAbortException : 0x0 [Type: Object *]
    [+0x090] m_pThreadLocalModuleStatics : 0x291cb6aee90 [Type: void * *]
    [+0x098] m_numThreadLocalModuleStatics : 0x1 [Type: unsigned int]
    [+0x0a0] m_pGCFrameRegistrations : 0x0 [Type: GCFrameRegistration *]
    [+0x0a8] m_pStackLow      : 0xf754100000 [Type: void *]
    [+0x0b0] m_pStackHigh     : 0xf754200000 [Type: void *]
    [+0x0b8] m_pTEB           : 0xf7533ba000 : 0x0 [Type: unsigned char *]
    [+0x0c0] m_uPalThreadIdForLogging : 0x2044 [Type: unsigned __int64]
    [+0x0c8] m_threadId       [Type: EEThreadId]
    [+0x0d0] m_pThreadStressLog : 0x0 [Type: void *]
    [+0x0d8] m_interruptedContext : 0x0 [Type: _CONTEXT *]
    [+0x0e0] m_redirectionContextBuffer : 0x0 [Type: unsigned char *]
0:015> dx -r1 (*((ConsoleApp1!EEThreadId *)0x291ed366308))
(*((ConsoleApp1!EEThreadId *)0x291ed366308))                 [Type: EEThreadId]
    [+0x000] m_uiId           : 0x2044 [Type: unsigned __int64]

从CLR 的 Thread 维护的信息来看,这个结构体已经很小了,也说明 AOT 在Thread信息维护上做了很多的精简。

三:总结

总的来说,AOT 确实能加速程序的初始启动,一体化的打包机制也非常方便部署,但怎么变终究还是一个托管程序,需要底层的 C++ 托着它,扛 反编译 无从谈起,所以防小人的话,该加壳的加壳,该混淆的混淆。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/28588.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

群勃龙-半琥珀酸酯(TR-HS)与BSA牛血清白蛋白偶联 TR-HS-BSA

产品名称&#xff1a;群勃龙-半琥珀酸酯与牛血清白蛋白偶联 英文名称&#xff1a;TR-HS-BSA 用途&#xff1a;科研 状态&#xff1a;固体/粉末/溶液 产品规格&#xff1a;1g/5g/10g 保存&#xff1a;冷藏 储藏条件&#xff1a;-20℃ 储存时间&#xff1a;1年 牛血清中的简单蛋白…

全光谱台灯对孩子眼睛有影响吗?什么样的全光谱台灯真的有用

全光谱台灯对眼睛当然是有影响的&#xff0c;因为光谱成分丰富度与太阳光类似&#xff0c;所以无限接近于太阳光的显色能力&#xff0c;这样的灯光下物体的色差如同沐浴太阳光一般真实&#xff0c;色差不失真&#xff0c;人眼自然就越舒服。 那么什么样的全光谱台灯有用呢&…

Python|excel表格数据一键转json格式小工具|支持xlsx、xls格式转json|【源码+解析】

背景 最近在使用JavaScript编写一些浏览器RPA脚本&#xff0c;脚本使用过程中遇到一些问题&#xff0c;脚本使用的数据往往存放在excel表&#xff0c;但运行时只能读取json数据&#xff0c;导致频繁人工excel转json&#xff0c;效率低下。 遇到问题后赶紧搜索excel转json小工…

基于PHP+MySQL药品信息查询系统(含论文)

本系统阐述了医药信息查询系统的开发过程,并对该系统的需求分析及系统需要实现的设计方法作了介绍。该系统的基本功能包括用户注册登录,查看医药资讯,医药查询和在线留言等信息。 本系统技术介绍:php,mysql,apache,notepad,sublime.运行环境wamp,PHPstudy,xammp等php集成环境. …

FastAPI使用typing类型提示

typing是Python标准库&#xff0c;用来做类型提示。FastAPI使用typing做了&#xff1a; 编辑器支持&#xff1b; 类型检查&#xff1b; 定义类型&#xff0c;request path parameters, query parameters, headers, bodies, dependencies等等&#xff1b; 类型转换&#xff1…

去中心化应用的终极是应用链?

互操作性是近期在Web3兴起的概念&#xff0c;是指不同的计算机系统、网络、操作系统和应用程序一起工作并共享信息的能力。随着链上通信、语义交互逐渐复杂&#xff0c;链上用户多样的需求已然超出应用在单条链可承受的技术能力。 原本视作创新实验的Web3应用逐渐被公众接纳&am…

初识变量和数据类型

JavaScript第2天 输入输出语句 输出语句 alert(变量) > 弹出document.write(变量) > 输出在页面上面console.log(变量) > 打印在控制台上 /* JS的输出语句 */ alert("弹出") document.write("直接在写页面上面") console.log("打印在控制…

MacOS 如何选择鼠标不飘滚动平滑

MacOS 如何选择鼠标不飘滚动平滑 前言 今天不务正业的聊聊 macos 下的鼠标的事情&#xff0c;群里也有朋友和我聊&#xff0c;正好说说这事。 我在很长的时间里都在用 macbook pro 的触控板 键盘的高效模式&#xff0c;因为触控板和键盘很近所以效率很高。 但是有一个问题就是…

set和multiset容器

1、基本概念 所有元素在插入时会自动排好序&#xff1b; 属于关联式容器&#xff0c;底层结构是用二叉树实现的 2、set和multiset的区别 set中不允许有重复元素&#xff0c;multiset允许有重复元素。 3、构造和赋值 构造&#xff1a; set<T>st; //默认构造 set&l…

Linux | 进程间通信 | 匿名管道 | 命名管道 | 模拟代码实现进程通信

文章目录进程通信的意义匿名管道通信原理管道的访问控制进程控制管道的特点命名管道进程通信的意义 之前聊进程时&#xff0c;讲过一个性质&#xff0c;即进程具有独立性&#xff0c;两个进程之间的交互频率是比较少的。就连父子进程也只是共享代码&#xff0c;修改父子进程中…

小程序云开发笔记一

一、什么是云开发&#xff1f; 微信官方云原生开发平台&#xff0c;腾讯云的各种能力加持&#xff0c;用云开发开发者可以节省大量的开发时间和运维成本。 二、云开发优势 无需运维&#xff0c;数据变大不需要管理&#xff0c; 弹性伸缩&#xff0c;业务量变大&#xff0c;服…

在一台电脑上安装多个python版本(小白教程)

我自己的办公电脑是64位&#xff0c;好几个同事的电脑还是win7&#xff0c;32位&#xff0c;因此我在写python办公自动化的时候还要考虑32位的python&#xff0c;因此在电脑上安装了两个版本的python&#xff0c;方便测试、打包使用 1、首先&#xff0c;下载两个python&#xf…

代码随想录算法训练营第七天|LeetCode 454. 四数相加 II 、383. 赎金信、 15. 三数之和、18. 四数之和

LeetCode 454. 四数相加 II 题目链接&#xff1a;454. 四数相加 II 分析&#xff1a; 本题比较简单&#xff0c;因为是无关的四个数组&#xff0c;所以不需要考虑去重&#xff0c;所以用哈希比较简单 思路&#xff1a; 定义个无序map先将nums1和nums2的和的数都存进去&…

单目标应用:世界杯优化算法(World Cup Optimization,WCO)求解单仓库多旅行商问题SD-MTSP(可更改旅行商个数及起点)

一、世界杯优化算法 世界杯优化算法&#xff08;World Cup Optimization&#xff0c;WCO)由Navid Razmjooy等人于2016年提出&#xff0c;该算法模拟了国际足联世界杯比赛&#xff0c;思路新颖&#xff0c;收敛速度快&#xff0c;全局寻优能力强。 算法原理参考&#xff1a;智…

[附源码]java毕业设计学生宿舍管理系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

新型智能优化算法——海鸥优化算法(基于Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客 &#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜…

基于莱维飞行扰动策略的麻雀搜索算法(ISSA)(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客 &#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜…

【强化学习论文合集】ICML-2022 强化学习论文 | 2022年合集(二)

强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。 本专栏整理了近几年国际顶级会议中,涉及强化学习(Rein…

[附源码]java毕业设计校园摄影爱好者交流网站

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

elasticsearch bucket 之rare terms聚合

文章目录1、背景2、需求3、前置准备3.1 准备mapping3.2 准备数据4、实现需求4.1 dsl4.2 java代码4.3 运行结果5、max_doc_count 和 search.max_buckets6、注意事项7、完整代码8、参考文档1、背景 我们知道当我们使用 terms聚合时&#xff0c;当修改默认顺序为_count asc时&…