1万属性,100亿数据,每秒10万吞吐,架构如何设计?

news2024/11/23 7:08:54

有一类业务场景,没有固定的schema存储,却有着海量的数据行数,架构上如何来实现这类业务的存储与检索呢?58最核心的数据“帖子”的架构实现技术细节,今天和大家聊一聊。
一、背景描述及业务介绍
什么是58最核心的数据?
58是一个信息平台,有很多垂直品类:招聘、房产、二手物品、二手车、黄页等等,每个品类又有很多子品类,不管哪个品类,最核心的数据都是“帖子信息”。
画外音:像不像一个大论坛?
各分类帖子的信息有什么特点?
逛过58的朋友很容易了解到,这里的帖子信息:
(1)各品类的属性千差万别,招聘帖子和二手帖子属性完全不同,二手手机和二手家电的属性又完全不同,目前恐怕有近万个属性;
(2)数据量巨大,100亿级别;
(3)每个属性上都有查询需求,各组合属性上都可能有组合查询需求,招聘要查职位/经验/薪酬范围,二手手机要查颜色/价格/型号,二手要查冰箱/洗衣机/空调;
(4)吞吐量很大,每秒几10万吞吐;
如何解决100亿数据量,1万属性,多属性组合查询,10万并发查询的技术难题呢?一步步来。
二、最容易想到的方案
每个公司的发展都是一个从小到大的过程,撇开并发量和数据量不谈,先看看
(1)如何实现属性扩展性需求;
(2)多属性组合查询需求;
画外音:公司初期并发量和数据量都不大,必须先解决业务问题。
如何满足业务的存储需求呢?
最开始,业务只有一个招聘品类,那帖子表可能是这么设计的:
tiezi(tid, uid, c1, c2, c3);
那如何满足各属性之间的组合查询需求呢?
最容易想到的是通过组合索引满足查询需求:
index_1(c1, c2)
index_2(c2, c3)
index_3(c1, c3)
随着业务的发展,又新增了一个房产类别,存储问题又该如何解决呢?
可以新增若干属性满足存储需求,于是帖子表变成了:
tiezi(tid, uid, c1, c2, c3, c10, c11, c12, c13);
其中:

  • c1,c2,c3是招聘类别属性
  • c10,c11,c12,c13是房产类别属性

通过扩展属性,可以解决存储的问题。
查询需求,又该如何满足呢?
首先,跨业务属性一般没有组合查询需求。只能建立了若干组合索引,满足房产类别的查询需求。
画外音:不敢想有多少个索引能覆盖所有两属性查询,三属性查询。
当业务越来越多时,是不是发现玩不下去了?
三、垂直拆分是一个思路
新增属性是一种扩展方式,新增表也是一种方式,垂直拆分也是常见的存储扩展方案。
如何按照业务进行垂直拆分?
可以这么玩:
tiezi_zhaopin(tid, uid, c1, c2, c3);
tiezi_fangchan(tid, uid, c10, c11, c12, c13);
在业务各异,数据量和吞吐量都巨大的情况下,垂直拆分会遇到什么问题呢?
这些表,以及对应的服务维护在不同的部门,看上去各业务灵活性强,研发闭环,这恰恰是悲剧的开始:
(1)tid如何规范?
(2)属性如何规范?
(3)按照uid来查询怎么办(查询自己发布的所有帖子)?
(4)按照时间来查询怎么办(最新发布的帖子)?
(5)跨品类查询怎么办(例如首页搜索框)?
(6)技术范围的扩散,有的用mongo存储,有的用mysql存储,有的自研存储;
(7)重复开发了不少组件;
(8)维护成本过高;
(9)…
画外音:想想看,电商的商品表,不可能一个类目一个表的。

四、58的玩法:三大中心服务
第一:统一帖子中心服务
平台型创业型公司,可能有多个品类,各品类有很多异构数据的存储需求,到底是分还是合,无需纠结:基础数据基础服务的统一,是一个很好的实践。
画外音:这里说的是平台型业务。
如何将不同品类,异构的数据统一存储起来呢?
(1)全品类通用属性统一存储;
(2)单品类特有属性,品类类型与通用属性json来进行存储;
更具体的:
tiezi(tid, uid, time, title, cate, subcate, xxid, ext);
(1)一些通用的字段抽取出来单独存储;
(2)通过cate, subcate, xxid等来定义ext是何种含义;


(3)通过ext来存储不同业务线的个性化需求
例如:
招聘的帖子,ext为:
{“job”:”driver”,”salary”:8000,”location”:”bj”}
而二手的帖子,ext为:
{”type”:”iphone”,”money”:3500}


帖子数据,100亿的数据量,分256库,通过ext存储异构业务数据,使用mysql存储,上层架了一个帖子中心服务,使用memcache做缓存,就是这样一个并不复杂的架构,解决了业务的大问题。这是58最核心的帖子中心服务IMC(Info Management Center)。
画外音:该服务的底层存储在16年全面切换为了自研存储引擎,替换了mysql,但架构理念仍未变。
解决了海量异构数据的存储问题,遇到的新问题是:
(1)每条记录ext内key都需要重复存储,占据了大量的空间,能否压缩存储;
(2)cateid已经不足以描述ext内的内容,品类有层级,深度不确定,ext能否具备自描述性;
(3)随时可以增加属性,保证扩展性;
解决完海量异构数据的存储问题,接下来,要解决的是类目的扩展性问题。
第二:统一类目属性服务
每个业务有多少属性,这些属性是什么含义,值的约束等,耦合到帖子服务里显然是不合理的,那怎么办呢?
抽象出一个统一的类目、属性服务,单独来管理这些信息,而帖子库ext字段里json的key,统一由数字来表示,减少存储空间。


画外音:帖子表只存元信息,不管业务含义。
如上图所示,json里的key不再是”salary” ”location” ”money” 这样的长字符串了,取而代之的是数字1,2,3,4,这些数字是什么含义,属于哪个子分类,值的校验约束,统一都存储在类目、属性服务里。


画外音:类目表存业务信息,以及约束信息,与帖子表解耦。
这个表里对帖子中心服务里ext字段里的数字key进行了解释:
(1)1代表job,属于招聘品类下100子品类,其value必须是一个小于32的[a-z]字符;
(2)4代表type,属于二手品类下200子品类,其value必须是一个short;
这样就对原来帖子表ext扩展属性:
{“1”:”driver”,”2”:8000,”3”:”bj”}
{”4”:”iphone”,”5”:3500}
key和value都做了统一约束。
除此之外,如果ext里某个key的value不是正则校验的值,而是枚举值时,需要有一个对值进行限定的枚举表来进行校验:


这个枚举校验,说明key=4的属性(对应属性表里二手,手机类型字段),其值不只是要进行“short类型”校验,而是value必须是固定的枚举值。
{”4”:”iphone”,”5”:3500}
这个ext就是不合法的,key=4的value=iphone不合法,而应该是枚举属性,合法的应该为:
{”4”:”5”,”5”:3500}
此外,类目属性服务还能记录类目之间的层级关系:
(1)一级类目是招聘、房产、二手…
(2)二手下有二级类目二手家具、二手手机…
(3)二手手机下有三级类目二手iphone,二手小米,二手三星…
(4)…


类目服务解释了帖子数据,描述品类层级关系,保证各类目属性扩展性,保证各属性值合理性校验,就是58另一个统一的核心服务CMC(Category Management Center)。
画外音:类目、属性服务像不像电商系统里的SKU扩展服务?
(1)品类层级关系,对应电商里的类别层级体系;
(2)属性扩展,对应电商里各类别商品SKU的属性;
(3)枚举值校验,对应属性的枚举值,例如颜色:红,黄,蓝;
通过品类服务,解决了key压缩,key描述,key扩展,value校验,品类层级的问题,还有这样的一个问题没有解决:每个品类下帖子的属性各不相同,查询需求各不相同,如何解决100亿数据量,1万属性的检索与联合检索需求呢?

第三:统一检索服务
数据量很大的时候,不同属性上的查询需求,不可能通过组合索引来满足所有查询需求,“外置索引,统一检索服务”是一个很常用的实践:
(1)数据库提供“帖子id”的正排查询需求;
(2)所有非“帖子id”的个性化检索需求,统一走外置索引;


元数据与索引数据的操作遵循:
(1)对帖子进行tid正排查询,直接访问帖子服务;
(2)对帖子进行修改,帖子服务通知检索服务,同时对索引进行修改;
(3)对帖子进行复杂查询,通过检索服务满足需求;
画外音:这个检索服务,扛起了58同城80%的请求(不管来自PC还是APP,不管是主页、城市页、分类页、列表页、详情页,最终都会转化为一个检索请求),它就是58另一个统一的核心服务E-search,这个搜索引擎,是完全自研的。
对于这个内核自研服务的搜索引擎架构,简单说明一下:


为应对100亿级别数据量、几十万级别的吞吐量,业务线各种复杂的复杂检索查询,扩展性是设计重点:
(1)统一的代理层,作为入口,其无状态性能够保证增加机器就能扩充系统性能;
(2)统一的结果聚合层,其无状态性也能够保证增加机器就能扩充系统性能;
(3)搜索内核检索层,服务和索引数据部署在同一台机器上,服务启动时可以加载索引数据到内存,请求访问时从内存中load数据,访问速度很快:

  • 为了满足数据容量的扩展性,索引数据进行了水平切分,增加切分份数,就能够无限扩展性能
  • 为了满足一份数据的性能扩展性,同一份数据进行了冗余,理论上做到增加机器就无限扩展性能

系统时延,100亿级别帖子检索,包含请求分合,拉链求交集,从聚合层均可以做到10ms返回。
画外音:入口层是Java研发的,聚合层与检索层都是C语言研发的。
帖子业务,一致性不是主要矛盾,E-search会定期全量重建索引,以保证即使数据不一致,也不会持续很长的时间。
五、总结


文章写了很长,最后做一个简单总结,面对100亿数据量,1万列属性,10万吞吐量的业务需求,可以采用了元数据服务、属性服务、搜索服务来解决:

  • 一个解决存储问题
  • 一个解决品类解耦问题
  • 一个解决检索问题

任何复杂问题的解决,都是循序渐进的。
思路比结论重要,希望大家有收获。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/25899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习入门(四十四)计算机视觉——多尺度目标检测

深度学习入门(四十四)计算机视觉——多尺度目标检测前言计算机视觉——多尺度目标检测教材1 多尺度锚框2 多尺度检测3 小结前言 核心内容来自博客链接1博客连接2希望大家多多支持作者 本文记录用,防止遗忘 计算机视觉——多尺度目标检测 教…

【Hack The Box】linux练习-- Postman

HTB 学习笔记 【Hack The Box】linux练习-- Postman 🔥系列专栏:Hack The Box 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 📆首发时间:🌴2022年11月17日🌴 &#x1f…

大学生旅游风景主题dreamweaver网页设计大作业-陕西渭南HTML+CSS制作网页

家乡旅游景点网页作业制作 网页代码运用了DIV盒子的使用方法,如盒子的嵌套、浮动、margin、border、background等属性的使用,外部大盒子设定居中,内部左中右布局,下方横向浮动排列,大学学习的前端知识点和布局方式都有…

从不学无术到架构师Leader:这份java面试知识宝典,一举斩获京东T8

前言 面试了大大小小各种公司,有BAT的,上市的,AB各种轮的,初创的……今天大概列举了下,至少有30家公司。 在这里我总结了求职面试需要注意的各种问题,希望可以用我收集的《Java面试核心知识笔记》及面试经…

element UI 组件封装--搜索表单(含插槽和内嵌组件)

组件封装–搜索表单 searchForm.vue 可根据需要&#xff0c;参考姓名和工作自行增加更多常用的默认搜索项 <template><div style"padding: 30px; width: 300px"><el-formref"searchFormRef":model"searchData":label-width"…

伽马校正笔记(Gamma Correction)

在数字图像系统中&#xff0c;伽马&#xff08;Gamma&#xff09;是一个重要的但很少被正确理解的特性。它定义了一个像素的数值和对应的实际亮度之间的关系。 人眼感知的亮度和相机“看到”的亮度区别 对于数码相机来说&#xff0c;当检测的光子数增加一倍时&#xff0c;sens…

Win11蓝屏代码IRQL NOT LESS OR EQUAL的处理方法

蓝屏错误IRQL NOT LESS OR EQUAL是用户常见的系统故障了&#xff0c;升级到Win11新系统也遇到了同样的问题&#xff0c;那么Win11蓝屏问题IRQL NOT LESS OR EQUAL要如何解决&#xff1f;下面就来看看小编整理的解决办法。 什么是 IRQL_NOT_LESS_OR_EQUAL 错误&#xff1f; IRQL…

【Docker】Docker入门学习

【Docker】学习docker 1.Docker安装与启动 1.1.安装 【第一步】yum包更新到最新版本 sudo yum update【第二步】安装需要的软件包&#xff0c;yum-util提供的yum-config-manager功能&#xff0c;另外两个是devicemapper驱动依赖的 sudo yum install -y yum-utils device-m…

三菱FX3U——ST编程定时器和计数器

在部件选择——FB——选择定时器类型 双击弹出标签登录/选择对话框&#xff0c;点击应用&#xff1b; 编辑器自动插入TON_1; 光标放在TON_1后&#xff0c;按下CTRLF1&#xff0c;补全代码; IN&#xff1a; 输入&#xff0c;PT&#xff1a;定时时间&#xff0c;Q&#xff1a;输…

windows上使用Gitblit搭建git服务仓库

第一步: 由于要运行jar包&#xff0c;得先安装好java环境&#xff0c;安装环境的教程很多&#xff0c;这步不做赘述 第二步&#xff1a; 找到Gitblit的安装包 http://gitblit.github.io/gitblit/ 这是官网地址&#xff0c;我就没下载成功过&#xff0c;你要不信&#xff0c;也可…

PyQt5 QMediaPlayer播放不了视频

代码&#xff1a; 编辑器 pycharm: from PyQt5.QtWidgets import QApplication, QWidget, QFileDialog from PyQt5.QtMultimediaWidgets import QVideoWidget from PyQt5.QtMultimedia import QMediaPlayer, QMediaContent import sysapp QApplication(sys.argv)win QWidge…

数据库主键一定要自增的吗?有哪些场景下不建议自增?

我们平时建表的时候&#xff0c;一般会像下面这样。 CREATE TABLE user (id int NOT NULL AUTO_INCREMENT COMMENT 主键,name char(10) NOT NULL DEFAULT COMMENT 名字,PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT CHARSETutf8mb4;出于习惯&#xff0c;我们一般会加一列id作为…

K8s基础之-Pod

第一章&#xff1a;什么是Pod 1.1 创建一个Pod1.2 更改Pod的启动命令和参数1.3 Pod状态及pod故障排查命令1.4 Pod镜像拉取策略1.5 Pod重启策略 第二章&#xff1a;Pod探针 2.1 Pod的三种探针2.2 Pod探针的实现方式 2.2.1 数据库建表语句2.2.2 数据库解析2.2.3 修改Hive数据库…

Servlet常用API

目录 一、HttpServlet 1、HttpServlet核心方法 2、Servlet的生命周期 二、HttpRequest 1、HttpRequest核心方法 2、代码示例 示例1&#xff1a;打印请求信息 示例2&#xff1a;获取GET请求中的query string 示例3&#xff1a;获取POST请求中的query string(form表单形…

功率谱分析笔记-------脑电相关

1&#xff1a;功率谱分析的方法介绍 功率谱分析的方法大致可以分为两大类&#xff1a;第一类是经典的功率谱计算方法&#xff0c;第二类是现代功率谱计算方法&#xff0c;如图1所示。其中第一类经典功率谱分析方法&#xff0c;又可以分为直接法、间接法和改进的直接法。直接法…

常见移动端导航类型

手机导航设计是人机交互最重要的桥梁和平台&#xff0c;旨在引导用户正确的方向&#xff0c;不迷路。 好的菜单设计不仅能提升整个产品的用户体验&#xff0c;还能让用户耳目一新。 一、导航菜单的作用是什么 &#xff1f; 1.提升产品内容和功能结构和层次 2.重点展示核心功能…

windows cmd 常用操作命令

文章目录进程端口相关打开面板快捷键防火墙相关进程端口相关 可以查看本机开放的全部端口. netstat -ano 协议&#xff1a;分为TCP和UDP 本地地址&#xff08;Local Address&#xff09;&#xff1a;代表本机IP地址和打开的端口号 外部地址&#xff08;Foreign Address&#…

字节8年测试开发工程师感悟,说说我们自动化测试平台的进阶之路

前言 自2015年10月底加入Pactera Edge以来&#xff0c;我一直服务于客户的Quality Engineering项目。这之间经历了很多的技术变革&#xff0c;包括探索&#xff0c;实施&#xff0c;维护&#xff0c;淘汰等一整个流程。下面就写一下项目中 UTAP(unified testing automation pl…

Java多线程(三)

目录 一、线程的同步&#xff08;二&#xff09; 同步机制释放锁的操作 不会释放锁的操作 线程的死锁问题 死锁 解决方法 Lock(锁) 使用Lock(锁)创建多线程步骤&#xff1a; 使用Lock解决窗口售票问题 synchronized与Lock的对比 练习 二、线程的通信 通过例题说明线…

优化器-SQL语句分析与优化

一、连接-配置优化 1.1 连接数过多问题 有时会碰到Mysql&#xff1a;error 1040&#xff1a;Too many connection的错误。原因&#xff1a;超过了服务端设置的最大并发连接数。 1.2 从两个方面解决问题 服务端&#xff0c;增加服务端可用连接数&#xff1b;客户端&#xff0…