【 C++11 】lambda表达式

news2024/11/20 23:37:41

目录

1、lambda表达式的引入

2、lambda表达式

        lambda表达式的语法

        lambda表达式捕捉列表说明

        使用lambda表达式排序自定义类型

        lambda表达式的底层原理


1、lambda表达式的引入

在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法:

#include <algorithm>
#include <functional>
int main()
{
	int array[] = { 4,1,8,5,3,7,0,9,2,6 };
	// 默认按照小于比较,排出来结果是升序
	std::sort(array, array + sizeof(array) / sizeof(array[0]));
	// 如果需要降序,需要改变元素的比较规则
	std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());
	return 0;
}

如果待排序元素为自定义类型,需要用户定义排序时的比较规则。

struct Goods
{
	string _name; // 名字
	double _price; // 价格
	int _evaluate; // 评价
};

这里想要对商品排序,可以采用sort函数,对于sort函数则有仿函数重载( )运算符这两种方法:

  1. 对于此自定义类型,不可采用重载( )运算符的方法,因为( )运算符只能针对其中一种方法进行排序,比如名字或加个或评价,如果我对名字进行排序了,但是后续想要通过对价格进行排序,此时就行不通了,就需要再改重载( )的方法,这么做实在是太麻烦了,不适合用。
  2. 相反,按照我们先前学过的知识点,使用仿函数可以很好的进行任意一种方式的排序(名字、价格、评价),实现如下:
struct Goods
{
	string _name; // 名字
	double _price; // 价格
	int _evaluate; // 评价
	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};
struct ComparePriceLess
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price < gr._price;
	}
};
struct ComparePriceGreater
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price > gr._price;
	}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), ComparePriceLess());//按价格升序排
	sort(v.begin(), v.end(), ComparePriceGreater());//按价格降序排
}
  • 使用仿函数可以解决此问题,不过比较麻烦,如果我自定义类型有10个变量,恰好我又对这些变量有排序的需求,那么我就要写20个仿函数,代价稍微有点大。
  • 随着C++语法的发展,人们开始觉得上面的写法太复杂了,每次为了实现一个algorithm算法,都要重新去写一个类,如果每次比较的逻辑不一样,还要去实现多个类,特别是相同类的命名,这些都给编程者带来了极大的不便。因此,在C++11语法中出现了Lambda表达式

2、lambda表达式

这里我们先给出使用lambda表达式的方法解决上述对于自定义类型的排序需求的问题:

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
	3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price < g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price > g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate < g2._evaluate; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate > g2._evaluate; });
}

上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函数。下面我将演示lambda究竟是什么,以及其如何演化到上面的代码的。


lambda表达式的语法

lambda表达式书写格式如下:

//  捕捉列表		  参数列表    取消常量性	 返回值类型     函数体
[capture - list](parameters) mutable -> return-type{ statement }

lambda表达式各部分说明:

  • [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。
  • (parameters)参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略
  • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。
  • ->returntype返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
  • {statement}函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

注意:

  • 在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空。因此C++11中最简单的lambda函数为[]{}; 该lambda函数不能做任何事情。

示例:

  • 比如我要实现Add加法函数:
int main()
{
	int a = 2, b = 5;
	auto Add1 = [](int x, int y)->int { return x + y; };
	cout << Add1(a, b) << endl;//7
	return 0;
}

返回值类型明确的情况下,返回值类型可以省略掉,由编译器自动推导:

int main()
{
	int a = 2, b = 5;
	//返回值类型明确的情况下,返回值类型可以省略掉,由编译器自动推导
	auto Add2 = [](int x, int y) { return x + y; };
	cout << Add2(a, b) << endl;//7
	return 0;
}

来看下指定返回值类型的情况:

int main()
{
	int a = 0, b = 200;
	auto Add1 = [](int x, int y)->double { return (x + y) / 3.0; };
	auto Add2 = [](int x, int y)->int { return (x + y) / 3.0; };
	cout << Add1(a, b) << endl;//66.6667
	cout << Add2(a, b) << endl;//66
	return 0;
}

通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量。


lambda表达式捕捉列表说明

捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。

  • [var]:表示值传递方式捕捉变量var
  • [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
  • [&var]:表示引用传递捕捉变量var
  • [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
  • [this]:表示值传递方式捕捉当前的this指针

注意:

  1. 父作用域指包含lambda函数的语句块
  2. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量。[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量
  3. 捕捉列表不允许变量重复传递,否则就会导致编译错误。比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复
  4. 在块作用域以外的lambda函数捕捉列表必须为空
  5. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。
  6. lambda表达式之间不能相互赋值,即使看起来类型相同

示例1:Add加法函数

  • 对于上述实现的Add加法函数,如果我不想传参数,那么就需要用到捕捉列表。此时参数和返回值均可省略,且调用的地方也不需要传参。
int main()
{
	int a = 0, b = 200;
	auto Add1 = [](int x, int y)->int { return (x + y) / 3.0; };
	cout << Add1(a, b) << endl;//66
	//传值捕捉
	auto Add2 = [a, b] { return (a + b) / 3.0; };
	cout << Add2() << endl;//66.6667
	return 0;
}

示例2:交换函数

写法①:

  • 这里的交换函数不需要用到返回值,所以返回值可以省略,其次注意形参的改变不会影响实参,需要传引用。
int main()
{
	int a = 0, b = 200;
	auto swap1 = [](int& x, int& y) {
		int tmp = x;
		x = y;
		y = tmp;
	};
	swap1(a, b);
	cout << a << " " << b << endl;//200 0
	return 0;
}

写法②:

假设我不想用用到参数列表,那么就需要在捕获列表进行捕捉:

注意这样写会出现一个问题, 默认情况下,lambda函数总是一个const函数,所以a和b不可被修改,我们可以使用mutable来取消其常量性。

此时又会出现一个问题,怎么我又交换不了了,原因还是形参的改变不会印象实参,捕获列表要引用传递捕获变量:

int main()
{
	int a = 0, b = 200;
	auto swap2 = [&a, &b] {
		int tmp = a;
		a = b;
		b = tmp;
	};
	swap2();
	cout << a << " " << b << endl;//200 0
	return 0;
}

示例③:演示=、&

  • =和&的好处在于,当我需要获得多个变量时,可以直接采用=或&捕获所有父作用域变量:
int main()
{
	int c = 2, d = 3, e = 4, f = 5, g = 6, ret;
	//传值捕获全部变量
	auto Func1 = [=] {
		return c + d * e / f + g - 1;
	};
	cout << Func1() << endl;//9
	//传引用捕获全部变量
	auto Func2 = [&] {
		ret = c + d * e / f + g - 2;
		return ret;
	};
	cout << Func2() << endl;//8
	//混着捕捉:c,d传值。ret传引用
	auto Func3 = [c, d, &ret] {
		ret = c + d;
		return ret;
	};
	cout << Func3() << endl;//5
	//混着捕捉:ret传引用捕捉,其它全部传值捕捉
	auto Func4 = [=, &ret] {
		ret = c + d * e / f + g - 3;
		return ret;
	};
	cout << Func4() << endl;//7
	return 0;
}

注意:

  • lambda表达式之间不能相互赋值,即使看起来类型相同
void (*PF)();
int main()
{
	auto f1 = [] {cout << "hello world" << endl; };
	auto f2 = [] {cout << "hello world" << endl; };
	// 此处先不解释原因,等lambda表达式底层实现原理看完后,大家就清楚了
	//f1 = f2; // 编译失败--->提示找不到operator=()
	// 允许使用一个lambda表达式拷贝构造一个新的副本
	auto f3(f2);
	f3();
	// 可以将lambda表达式赋值给相同类型的函数指针
	PF = f2;
	PF();
	return 0;
}

使用lambda表达式排序自定义类型

说完了lambda的基础语法,再来看看我们一开始引入lambda时写的自定义类型:

struct Goods
{
	string _name; // 名字
	double _price; // 价格
	int _evaluate; // 评价
};

先前我们说对此自定义类型可以采用仿函数的方式进行排序,不过代码量繁杂,我们可以使用lambda来解决:

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };
	auto priceLess = [](const Goods& g1, const Goods& g2) {return g1._price < g2._price; };
	sort(v.begin(), v.end(), priceLess);
}

不过我们这里写的还算“保守”,因为我还给lambda表达式的返回值取名了,我们可以直接把它当成返回值放入sort函数里头,这里再演示其它变量用lambda排序的方式:

struct Goods
{
	string _name; // 名字
	double _price; // 价格
	int _evaluate; // 评价
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price < g2._price; });//价格升序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price > g2._price; });//价格降序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate < g2._evaluate; });//评分升序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate > g2._evaluate; });//评分降序
}
  • 此时就和我们前面给出的lambda表达式解决自定义类型排序的写法一致啦,这就是整个推演过程。

:lambda是否可以取代仿函数?

针对此问题,答案是不可以的,通过我们上面的学习,发现lambda对处理自定义类型的排序确实要方便很多,不过在模板参数中不能使用lambda表达式,只能使用仿函数,原因如下:

  1. 仿函数既可以代表类型,也可以代表对象
  2. lambda定义的是一个对象

而我模板参数的需求是要传类型,这里很显然就只能使用仿函数了。


lambda表达式的底层原理

  • 实际上lambda的底层就是仿函数,函数对象,又称为仿函数,即可以像函数一样使用的对象,就是在类中重载了operator()运算符的类对象。

我们以如下的案例进行说明:求利率

  • 如下我下了一个Rate求利率的仿函数,里面对( )运算符进行了重载,因此Rate实例化出的r1对象即函数对象,使r1可以像函数一样使用,后续又编写了一个lambda表达式,借助auto将其赋值给r2对象,使其也能够像函数一样使用。
class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}
	double operator()(double money, int year)
	{
		return money * _rate * year;
	}
private:
	double _rate;
};
int main()
{
	// 函数对象
	double rate = 0.49;
	Rate r1(rate);
	r1(10000, 2);
	// lambda表达式
	auto r2 = [=](double monty, int year)->double {return monty * rate * year; };
	r2(10000, 2);
	return 0;
}

下面调试代码进入反汇编,看到如下现象:

1、普通仿函数:

  • 创建函数对象r1时,调用Rate类的构造函数
  • 调用函数对象r1时,调用Rate类的( )运算符重载

2、lambda表达式:

  • 借助auto把lambda表达式赋值给r2时,会调用<lambda_uuid>类的构造函数。
  • 在调用r2对象时,会调用<lambda_uuid>类的()运算符重载函数。

  • 我定义一个lambda表达式,那么底层会生成一个仿函数,编译器看不到lambda,看到的是这个仿函数,当我调用lambda表达式的时候,编译器回去调用此仿函数的operator( )运算符重载。
  • 至于<lambda_2……330b3>这么一长串东西就是我们图示标注的<lambda_uuid>,也就是仿函数的类型名称

3、解释类名中的uuid:

  • 类名中的uuid是通用唯一识别码(Universally Unique Identifier)的缩写,其作用是通过算法生成一些唯一的字符串,保证在当前程序当中每次生成的uuid都不会重复。
  • 我上层是看不到lambda的名称的,所以这就导致给lambda取名字时很容易就会冲突,使用了uuid,那么不同的lambda转换后生成仿函数的名称就不一样了,也就不会发生冲突了。

4、解释lambda表达式之间不能相互赋值:

  • 对于我们先前给出的示例,即使我两个lambda表达式的实现是一样的,但lambda表达式在底层会被处理为函数对象,该函数对象对应的类名叫做<lambda_uuid>uuid通过算法生成一串字符串,保证在当前程序当中每次生成的uuid都不会重复。这里也就生成了两个类型的仿函数,自然也就是两个不同的对象,当然就不能赋值。
void (*PF)();
int main()
{
	auto f1 = [] {cout << "hello world" << endl; };
	auto f2 = [] {cout << "hello world" << endl; };
	//f1 = f2; // 编译失败--->提示找不到operator=()
	// 允许使用一个lambda表达式拷贝构造一个新的副本
	auto f3(f2);
	f3();
	// 可以将lambda表达式赋值给相同类型的函数指针
	PF = f2;
	PF();
	return 0;
}

5、总结:

  1. 每个lambda都会被转换成一个仿函数类型
  2. 普通仿函数的名称是自己取的,lambda的仿函数名称是编译器取的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/244.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

asp.net图书馆借阅归还系统

图书管理系统既是完整的知识定位系统&#xff0c;又是面向未来互联网发展的信息管理模式。图书管理系统&#xff0c;是一套利用计算机信息网络技术&#xff0c;实现对引用、注释和参考图书的自动化处理和规范化管理&#xff0c;服务于教师&#xff0c;学生及各类科研人员的集成…

【C语言进阶考试】你是否真正学懂了C语言

目录 前言 &#x1f392;选择题【全面深度剖析】 &#x1f4d7;考点一&#xff1a;无符号数unsigned的理解与应用 &#x1f4d5;考点二&#xff1a;字符ASCII计算与转换的理解和应用 &#x1f4d9;考点三&#xff1a;对位操作符的理解与应用 &#x1f4d8;考点四&#xf…

docker mysql 主从配置

准备&#xff1a;一台装有docker的虚拟机或者服务器 拉取mysql镜像&#xff1a; docker pull mysql:5.6 启动两个mysql容器 master docker run -p 1006:3306 --name mysql_master -v F:/mysql/mysql_master/conf:/etc/mysql -v F:/mysql/mysql_master/logs:/logs -v F:/mys…

【1024 | 程序员节】浅谈前端开发中常用的设计模式——适配器模式、工厂模式、单例模式等

前言 博主主页&#x1f449;&#x1f3fb;蜡笔雏田学代码 专栏链接&#x1f449;&#x1f3fb;【前端面试专栏】 今天学习前端面试题相关的知识&#xff01; 感兴趣的小伙伴一起来看看吧~&#x1f91e; 文章目录设计模式设计模式分类工厂模式什么是工厂模式工厂模式好处单例模式…

I2C知识大全系列三 —— I2C驱动之单片机中的I2C

两种方式 单片机中的I2C驱动有两种方式。一种方式是用专用硬件I2C控制器实现&#xff0c;这种方式简单易行&#xff0c;品质也容易控制&#xff0c;只是会增加硬件成本方面的压力。另一种方式是用纯软件方式实现&#xff0c;这种方式几乎无硬件成本方面的考虑。 主要对比&…

网页图片采集-网页图片采集软件免费

一款免费的网页图片采集软件可以采集网页上的各种图片&#xff0c;每个人都可以采集到各种高清图源。支持任意格式的图片采集&#xff0c;只需要导入链接即可批量采集图片。 还有更多的采集方式&#xff1a;输入关键词全网图片采集/任意网站所有图片采集&#xff01;不仅可以采…

【C++】STL——vector(万字详解)

&#x1f387;C学习历程&#xff1a;入门 博客主页&#xff1a;一起去看日落吗持续分享博主的C学习历程博主的能力有限&#xff0c;出现错误希望大家不吝赐教分享给大家一句我很喜欢的话&#xff1a; 也许你现在做的事情&#xff0c;暂时看不到成果&#xff0c;但不要忘记&…

记首次参加网络安全比赛(初赛-知识竞赛,决赛-CTF夺旗赛-解题模式)

网络安全相关的方向很多&#xff0c;几乎IT相关的安全内容都可以涵盖在内。笔者本身的知识体系更偏向于编程语言和Web应用&#xff0c;本次参赛可谓极具挑战&#xff0c;但是就是喜欢这种感觉&#xff1a;&#xff09; 赛程安排 9月16日接到通知 9月26日初赛 10月15日决赛 …

计算机网络习题答案

1、校园网属于&#xff08;局域网LAN &#xff09; 2、在下列传输介质中&#xff0c;(光缆 )传输介质的抗电磁干扰性最好。 3、光纤上采用的多路复用技术为&#xff08;WDM&#xff09; 4、计算机网络的交换方式不包括 无线交换 5、网络体系结构模型OSI模型和TCP/IP模型…

区块链实训教程(6)--开发、编译、部署、调用HelloWorld合约

文章目录1. 任务背景2. 任务目标3. 相关知识点4. 任务实操4.1 新建合约文件4.2 编写合约代码4.3 保存、编译、部署合约4.4 调用合约5. 任务总结1. 任务背景 FISCO BCOS运用智能合约进行归纳资产管理、规则定义和价值交换等操作&#xff0c;所以我们需要学习如何使用智能合约。…

aws ec2 配置jenkins和gitlab

环境搭建 下载jenkins的war包&#xff0c;启动jenkisn nohup java -jar jenkins.war --httpPort8091 > jenkins.log 2>&1 &docker安装gitlab 默认情况下&#xff0c;Omnibus GitLab 会自动为初始管理员用户账号 (root) 生成密码&#xff0c;并将其存储到 /etc…

HarmonyOS系统中内核实现温湿度采集方法

大家好&#xff0c;今天主要来聊一聊&#xff0c;如何使用鸿蒙系统中的温湿度传感器方法。 第一&#xff1a;温湿度传感器基本原理 大部分的传感器是在环境温度变化后会产生一个相应的延伸&#xff0c;因此传感器可以以不同的方式对这种反应进行信号转换。常见的大部分是电阻…

gitlab cicd 5分钟快速入门搭建私人代码仓库

gitlab 是企业级私有服务器 本文章采用docker搭建gitlab 如有不懂可微信我号yizheng369 环境准备 购买阿里云服务器&#xff0c;或者其他服务器 注意&#xff1a;本文章是用阿里云的centos 7.6作为服务器 搭建步骤 1.设置环境变量 export GITLAB_HOME/srv/gitlab2.编写dock…

今天面了个阿里拿27k出来的小哥,让我见识到了什么是天花板

2022年堪称大学生就业最难的一年&#xff0c;应届毕业生人数是1076万。失业率超50%&#xff01; 但是我观察到一个数据&#xff0c;那就是已经就业的毕业生中&#xff0c;计算机通信等行业最受毕业生欢迎&#xff01; 计算机IT行业薪资高&#xff0c;平均薪资是文科其他岗位的3…

PLC NAND 虽来但远

前言 图片来源&#xff1a; 存储随笔 2022年8月份在美国FMS峰会上&#xff0c;Solidigm公司(前身为 Intel NAND 部门) 展示了全球第一款基于PLC NAND研发的SSD。这也标志着&#xff0c;PLC时代已正式拉开序幕。出于对 PLC 的好奇&#xff0c;本文分享PLC NAND 知识&#xff0…

C/C++描述 - 矩阵乘积的计算

矩阵运算是现代科学及工程计算的基石之一&#xff0c;而矩阵乘法则是其中最常见一种运算。对于二维矩阵A、B&#xff0c;如果A的列数等于B的行数&#xff0c;则矩阵A、B可乘&#xff0c;其结果矩阵C的行数等于A的行数&#xff0c;列数等于B的列数。 本文引用自作者编写的下述图…

ArcGIS || ENVI:如何将彩色影像拆分为R、G、B以及H、S、I(B/V)影像?

目录 01 加载RGB影像数据 02 分别将三个波段进行保存 03 将RGB三色图像转化为HSI(HSB或者叫HSV)图像 04 转换的HSI图像拆分成H、S、I三个影像 首先&#xff0c;需要明确&#xff0c;手机拍摄的影像即是Red、Green、Blue三波段影像&#xff1b; 另外&#xff0c;由于方法十分…

视觉合集3

这次的合集是找到了几个论文... 一起来说下 Fast Charging of Energy-dense Lithium-ion Batteries Real-time Short Video Recommendation on Mobile Devices Semantic interpretation for convolutional neural networks: What makes a cat a cat? Prompt-to-Prompt Ima…

【论文阅读】Pre-training Methods in Information Retrieval

文章目录前言Abs1.Intro2.Background2.1.A Hierarchical View of IR2.1.1.The Core Problem View of IR2.1.2.The Framework View of IR2.1.3.The System View of IR2.2.A Brief Overview of PTMs in IR前言 因为文章篇幅较长&#xff0c;因此还在持续阅读中原文&#xff08;F…

科研初体验之Linux服务器的入门使用,关于分配了Linux账号之后怎么用,以及怎么利用Linux服务器来跑我们的python代码

前情提要 如果有人看了我之前发的乱七八糟的博客的话&#xff0c;应该就能了解到&#xff0c;我之前是计算机专业大三的学生&#xff0c;好不容易get到了保研的名额&#xff0c;前段时间就一直在操练LeetCode&#xff0c;到处报夏令营啊&#xff0c;预推免什么的&#xff0c;最…