day30 学习笔记

news2025/4/23 12:07:14

文章目录

  • 前言
  • 一、凸包特征检测
    • 1.穷举法
    • 2.QuickHull法
  • 二、图像轮廓特征查找
    • 1.外接矩形
    • 2.最小外接矩形
    • 3.最小外接圆


前言

  • 通过今天的学习,我掌握了OpenCV中有关凸包特征检测,图像轮廓特征查找的相关原理和操作

一、凸包特征检测

    • 通俗的讲,凸包其实就是将一张图片中物体的最外层的点连接起来构成的凸多边形,它能包含物体中所有的内容。
  • 凸包检测常用在物体识别、手势识别、边界检测等领域。
    tips:凸包与图像的轮廓的区别在于:图像轮廓可能含有凹集,保留了图像的细节;而凸包只含有凸集,是图像的凸近似

1.穷举法

  • 对集合中的所有点进行两两配对后连接,对于每条直线,检查其余所有点是否处于直线的同一侧,如果是,那么这两个点是凸包点
    • 用向量的思想,点都是有坐标的,连起来就可以构成一个向量。再以其中一个点,连接另一个点,构成另一个向量,让两个向量做外积,就是叉积。也就是 s t d = ∣ 向量 a ∣ ∗ ∣ 向量 b ∣ ∗ s i n ( θ ) std=|向量a|*|向量b|*sin(\theta) std=向量a向量bsin(θ) ,能控制 s t d std std的正负的只能是 θ \theta θ,如果计算出来的 s t d std std的正负都相同,说明这些点都在这条直线的同一侧,那么这两个点就是凸包的边界点。

2.QuickHull法

  • 将所有点放在二维坐标系中,找到横坐标最小和最大的两个点 P 1 P_1 P1 P 2 P_2 P2并连线。此时整个点集被分为两部分,直线上为上包,直线下为下包。
  • 以上包为例,找到上包中的点距离该直线最远的点 P 3 P_3 P3,连线并寻找直线 P 1 P 3 P1P3 P1P3左侧的点和 P 2 P 3 P2P3 P2P3右侧的点,然后重复本步骤,直到找不到为止。对下包也是这样操作。

对于未经处理的图像,我们无法直接获取点的坐标。特别是对于彩色图像,我们需要将其转换为二值图像,并使用轮廓检测技术来获取轮廓边界的点的坐标。然后,我们才能进行上述寻找凸包点的过程。

1.获取凸包点

  • cv2.convexHull(points)
  • points:输入参数,图像的轮廓

2.绘制凸包

  • cv2.polylines(image, pts, isClosed, color, thickness=1)
  • pts:输入凸包点组成的列表
  • isclosed:表示是否为闭合多边形
# 获取图像
img = cv.imread(r'D:\AI\笔记课件\images\num.png')
# 灰度化
img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 二值化
_,img_binary = cv.threshold(img_gray,127,255,cv.THRESH_OTSU+cv.THRESH_BINARY_INV)
# 获取轮廓
contours,hierarchy = cv.findContours(img_binary,mode=cv.RETR_EXTERNAL,method=cv.CHAIN_APPROX_SIMPLE)
# 获取凸包
points = [cv.convexHull(i) for i in contours]
# 绘制凸包
cv.polylines(img,points,True,(255,0,0),3,cv.LINE_AA)
# 显示图像
cv.imshow('img',img)
cv.waitKey(0)
cv.destroyAllWindows()

二、图像轮廓特征查找

  • 查找图像的轮廓特征就是查找图像的外接轮廓
  • 根据轮廓点进行查找,所以需要先找到轮廓点
  • 对图像进行灰度化和二值化,目标区域设为白色,其余部分为黑色

1.外接矩形

  • cv2.boundingRect(轮廓点坐标)
  • 返回的是外接矩形的空间位置信息,即轮廓坐标中最上、最下、最左、最右的点的坐标
img = cv.imread(r"D:\AI\笔记课件\images\flower2.png")
img_copy = img.copy()
# 灰度化
img_gray = cv.cvtColor(img_copy,cv.COLOR_BGR2GRAY)
# 二值化
_,img_binary = cv.threshold(img_gray,127,255,cv.THRESH_OTSU+cv.THRESH_BINARY_INV)
# 查找轮廓
contours,hierarchy = cv.findContours(img_binary,mode=cv.RETR_EXTERNAL,method=cv.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
cv.drawContours(img_copy,contours,-1,(255,0,0),3)
# 获取外接矩阵位置
for i in contours:
    x_min,y_min,w,h = cv.boundingRect(i)
    # 绘制外接矩形
    cv.rectangle(img_copy,(x_min,y_min),(x_min+w,y_min+h),(0,0,255),3,cv.LINE_AA)
# 显示效果
cv.imshow('img',img_copy)
cv.waitKey(0)
cv.destroyAllWindows()

2.最小外接矩形

  • 使用旋转卡壳算法

  • 对于多边形P的一个外接矩形存在一条边与原多边形的边共线。

  • 对于每一条边,找到距离边变最远的点的距离作为矩形的高

  • 对于每一条边,找到投影到边最大的距离计算矩形的宽

  • 比较通过每一条边计算得到的矩形面积进行比较,找到最小的矩形面积
    w i d t h = ∣ b h ‾ ∣ × cos ⁡ a + ∣ a d ‾ ∣ × cos ⁡ θ − ∣ a b ‾ ∣ w i d t h=|\overline{{{b h}}}|\times\cos a+|\overline{{{a d}}}|\times\cos\theta-|\overline{{{a b}}}| width=bh×cosa+ad×cosθab

  • 在OpenCV中,可以直接使用cv2.minAreaRect()来获取最小外接矩形,该函数只需要输入一个参数,就是凸包点的坐标,然后会返回最小外接矩形的中心点坐标、宽高以及旋转角度。
    rect = cv2.minAreaRect(cnt)

  • 传入的cnt参数为contours中的轮廓,可以遍历contours中的所有轮廓,然后计算出每个轮廓的小面积外接矩形

  • rect 是计算轮廓最小面积外接矩形:rect 结构通常包含中心点坐标 (x, y)、宽度 width、高度 height 和旋转角度 angle
    cv2.boxPoints(rect).astype(int)

  • cv2.boxPoints(rect)返回 是一个形状为4行2列的数组,每一行代表一个点的坐标(x, y),顺序按照逆时针或顺时针方向排列

  • 将最小外接矩形转换为边界框的四个角点,并转换为整数坐标

img = cv.imread(r"D:\AI\笔记课件\images\num.png")
# 灰度化
img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 二值化
_,img_binary = cv.threshold(img_gray,127,255,cv.THRESH_OTSU+cv.THRESH_BINARY_INV)
# 查找轮廓
contours,hierarchy = cv.findContours(img_binary,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)
# 获取最小外接矩形
for i in contours:
    rect = cv.minAreaRect(i)
    # 获取每个顶点的坐标
    box = cv.boxPoints(rect).astype(np.int32)
    # 绘制图像
    cv.drawContours(img,[box],-1,(255,0,0),2,cv.LINE_AA)
# 显示效果
cv.imshow('img',img)
cv.waitKey(0)
cv.destroyAllWindows()

3.最小外接圆

  • 寻找最小外接圆使用的算法是Welzl算法。Welzl算法基于一个定理:希尔伯特圆定理,对于平面上的任意三个不在同一直线上的点,存在一个唯一的圆同时通过这三个点,且该圆是最小面积的圆(即包含这三个点的圆中半径最小的圆,也称为最小覆盖圆)。
  • 新加入的点一定在新的最小覆盖圆的圆周上
    cv2.minEnclosingCircle(points) -> (center, radius)

参数说明:

  • points:输入参数图片轮廓数据

返回值:

  • center:一个包含圆心坐标的二元组 (x, y)
  • radius:浮点数类型,表示计算得到的最小覆盖圆的半径。

cv2.circle(img, center, radius, color, thickness)

  • img:输入图像,通常是一个numpy数组,代表要绘制圆形的图像。
  • center:一个二元组 (x, y),表示圆心的坐标位置。
  • radius:整型或浮点型数值,表示圆的半径长度。
  • color:颜色标识,可以是BGR格式的三元组 (B, G, R),例如 (255, 0, 0) 表示红色。
  • thickness:整数,表示圆边框的宽度。如果设置为 -1,则会填充整个圆。
img = cv.imread(r"D:\AI\笔记课件\images\num.png")
# 灰度化
img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 二值化
_,img_binary = cv.threshold(img_gray,127,255,cv.THRESH_OTSU+cv.THRESH_BINARY_INV)
# 查找轮廓
contours,_ = cv.findContours(img_binary,mode=cv.RETR_EXTERNAL,method=cv.CHAIN_APPROX_SIMPLE)
# 获取最小外接圆
for i in contours:
    # 获取每个点的位置信息
    (x,y),radius = cv.minEnclosingCircle(i)
    # 数据类型转换,元组不能直接使用astype进行类型转换
    x,y,radius = np.int_(x),np.int_(y),np.int_(radius)
    # 绘制图像
    cv.circle(img,(x,y),radius,(255,0,0),3,cv.LINE_AA)
# 显示效果
cv.imshow('img',img)
cv.waitKey(0)
cv.destroyAllWindows()

THE END

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2340748.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(51单片机)LCD显示温度(DS18B20教程)(LCD1602教程)(延时函数教程)(单总线教程)

演示视频: LCD显示温度 源代码 如上图将9个文放在Keli5 中即可,然后烧录在单片机中就行了 烧录软件用的是STC-ISP,不知道怎么安装的可以去看江科大的视频: 【51单片机入门教程-2020版 程序全程纯手打 从零开始入门】https://www.…

服务器运维:服务器流量的二八法则是什么意思?

文章目录 用户行为角度时间分布角度应用场景角度 服务器流量的二八法则,又称 80/20 法则,源自意大利经济学家帕累托提出的帕累托法则,该法则指出在很多情况下,80% 的结果是由 20% 的因素所决定的。在服务器流量领域,二…

【LeetCode】嚼烂热题100【持续更新】

2、字母异位词分组 方法一&#xff1a;排序哈希表 思路&#xff1a;对每个字符串排序&#xff0c;排序后的字符串作为键插入到哈希表中&#xff0c;值为List<String>形式存储单词原型&#xff0c;键为排序后的字符串。 Map<String, List<String>> m new Ha…

赛灵思 XC7K325T-2FFG900I FPGA Xilinx Kintex‑7

XC7K325T-2FFG900I 是 Xilinx Kintex‑7 系列中一款工业级 (I) 高性能 FPGA&#xff0c;基于 28 nm HKMG HPL 工艺制程&#xff0c;核心电压标称 1.0 V&#xff0c;I/O 电压可在 0.97 V–1.03 V 之间灵活配置&#xff0c;并可在 –40 C 至 100 C 温度范围内稳定运行。该器件提供…

k8s-1.28.10 安装metrics-server

1.简介 Metrics Server是一个集群范围的资源使用情况的数据聚合器。作为一个应用部署在集群中。Metric server从每个节点上KubeletAPI收集指标&#xff0c;通过Kubernetes聚合器注册在Master APIServer中。为集群提供Node、Pods资源利用率指标。 2.下载yaml文件 wget https:/…

基于外部中中断机制,实现以下功能: 1.按键1,按下和释放后,点亮LED 2.按键2,按下和释放后,熄灭LED 3.按键3,按下和释放后,使得LED闪烁

题目&#xff1a; 参照外部中断的原理和代码示例,再结合之前已经实现的按键切换LED状态的实验&#xff0c;用外部中断改进其实现。 请自行参考文档《中断》当中&#xff0c;有关按键切换LED状态的内容, 自行连接电路图&#xff0c;基于外部中断机制&#xff0c;实现以下功能&am…

【我的创作纪念日】 --- 与CSDN走过的第365天

个人主页&#xff1a;夜晚中的人海 不积跬步&#xff0c;无以至千里&#xff1b;不积小流&#xff0c;无以成江海。-《荀子》 文章目录 &#x1f389;一、机缘&#x1f680;二、收获&#x1f3a1;三、 日常⭐四、成就&#x1f3e0;五、憧憬 &#x1f389;一、机缘 光阴似箭&am…

鸿蒙生态新利器:华为ArkUI-X混合开发框架深度解析

鸿蒙生态新利器&#xff1a;华为ArkUI-X混合开发框架深度解析 作者&#xff1a;王老汉 | 鸿蒙生态开发者 | 2025年4月 &#x1f4e2; 前言&#xff1a;开发者们的新机遇 各位鸿蒙开发者朋友们&#xff0c;是否还在为多平台开发重复造轮子而苦恼&#xff1f;今天给大家介绍一位…

‌信号调制与解调技术基础解析

调制解调技术是通信系统中实现基带信号与高频载波信号相互转换的主要技术&#xff0c;通过调整信号特性使其适应不同信道环境&#xff0c;保障信息传输的效率和可靠性。 调制与解调的基本概念 调制&#xff08;Modulation&#xff09;‌ 将低频基带信号&#xff08;如语音或数…

【扫描件批量改名】批量识别扫描件PDF指定区域内容,用识别的内容修改PDF文件名,基于C++和腾讯OCR的实现方案,超详细

批量识别扫描件PDF指定区域内容并重命名文件方案 应用场景 本方案适用于以下场景: 企业档案数字化管理:批量处理扫描的合同、发票等文件,按内容自动分类命名财务票据处理:自动识别票据上的关键信息(如发票号码、日期)用于归档医疗记录管理:从扫描的检查报告中提取患者I…

序列决策问题(Sequential Decision-Making Problem)

序列决策问题&#xff08;Sequential Decision-Making Problem&#xff09;是强化学习&#xff08;Reinforcement Learning, RL&#xff09;的核心研究内容&#xff0c;其核心思想是&#xff1a;​​智能体&#xff08;Agent&#xff09;需要在连续的时间步骤中&#xff0c;通过…

L2-1、打造稳定可控的 AI 输出 —— Prompt 模板与格式控制

一、为什么需要 Prompt 模板&#xff1f; 在与 AI 模型交互时&#xff0c;我们经常会遇到输出不稳定、格式混乱的问题。Prompt 模板帮助我们解决这些问题&#xff0c;通过结构化的输入指令来获得可预测且一致的输出结果。 模板的作用主要体现在&#xff1a; 固定输出格式&am…

LLM中什么是模板定义、提示工程和文档处理链

LLM中什么是模板定义、提示工程和文档处理链 定义提示模板(prompt_template):prompt_template = """Use the following pieces of context to answer the question at the end. If you dont know the answer, just say that you dont know, dont try to make…

密码学(二)流密码

2.1流密码的基本概念 流密码的基本思想是利用密钥 k 产生一个密钥流...&#xff0c;并使用如下规则对明文串 ... 加密&#xff1a;。密钥流由密钥流发生器产生&#xff1a; &#xff0c;这里是加密器中的记忆元件&#xff08;存储器&#xff09;在时刻 i 的状态&#xff0c…

力扣第446场周赛

有事没赶上, 赛后模拟了一下, 分享一下我的解题思路和做题感受 1.执行指令后的得分 题目链接如下&#xff1a;力扣 给你两个数组&#xff1a;instructions 和 values&#xff0c;数组的长度均为 n。 你需要根据以下规则模拟一个过程&#xff1a; 从下标 i 0 的第一个指令开…

OpenCV中的透视变换方法详解

文章目录 引言1. 什么是透视变换2. 透视变换的数学原理3. OpenCV中的透视变换代码实现3.1 首先定义四个函数 3.1.1 cv_show() 函数 3.1.2 def resize() 函数 3.1.3 order_points() 函数 3.1.4 four_point_transform() 函数 3.2 读取图片并做预处理3.3 轮廓检测3.4 获取最大…

并发设计模式实战系列(3):工作队列

&#x1f31f; ​大家好&#xff0c;我是摘星&#xff01;​ &#x1f31f; 今天为大家带来的是并发设计模式实战系列&#xff0c;第三章工作队列&#xff08;Work Queue&#xff09;​​&#xff0c;废话不多说直接开始~ 目录 一、核心原理深度拆解 1. 生产者-消费者架构 …

如何理解抽象且不易理解的华为云 API?

API的概念在华为云的使用中非常抽象&#xff0c;且不容易理解&#xff0c;用通俗的语言 形象的比喻来讲清楚——什么是华为云 API&#xff0c;怎么用&#xff0c;背后原理&#xff0c;以及主要元素有哪些&#xff0c;尽量让新手也能明白。 &#x1f9e0; 一句话先理解&#xf…

深度学习-全连接神经网络(过拟合,欠拟合。批量标准化)

七、过拟合与欠拟合 在训练深层神经网络时&#xff0c;由于模型参数较多&#xff0c;在数据量不足时很容易过拟合。而正则化技术主要就是用于防止过拟合&#xff0c;提升模型的泛化能力(对新数据表现良好)和鲁棒性&#xff08;对异常数据表现良好&#xff09;。 1. 概念认知 …

系统架构设计师:流水线技术相关知识点、记忆卡片、多同类型练习题、答案与解析

流水线记忆要点‌ ‌公式 总时间 (n k - 1)Δt 吞吐率 TP n / 总时间 → 1/Δt&#xff08;max&#xff09; 加速比 S nk / (n k - 1) | 效率 E n / (n k - 1) 关键概念 周期&#xff1a;最长段Δt 冲突‌&#xff1a; ‌数据冲突&#xff08;RAW&#xff09; → 旁路/…