【MATLAB第117期】#源码分享 | 基于MATLAB的SSM状态空间模型多元时间序列预测方法(多输入单输出)

news2025/4/23 6:42:23

【MATLAB第117期】#源码分享 | 基于MATLAB的SSM状态空间模型多元时间序列预测方法(多输入单输出)

引言

本文使用状态空间模型实现失业率递归预测,状态空间模型(State Space Model, SSM)是一种用于描述动态系统行为的数学模型,通过状态变量、输入和输出的关系来刻画系统的时变特性。
在这里插入图片描述在这里插入图片描述

本示例演示如何使用Econometrics Toolbox中的状态空间模型,实现美国年度失业率的滚动窗口预测

% 模型结构:
%   x(t) = A*x(t-1) + B*u(t) + w(t)  (状态方程)
%   y(t) = C*x(t)   + D*u(t) + v(t)  (观测方程)
% 其中:
%   y(t) - 观测失业率
%   x(t) - 潜在状态变量
%   u(t) - 名义GNP增长率(外生变量)
%   w(t) ~ N(0,Q) - 过程噪声
%   v(t) ~ N(0,R) - 观测噪声

一、关键思路

‌1、滚动窗口机制‌
使用31年的窗口进行参数估计,逐年滚动预测下一年失业率
窗口滑动方式:1940-1970年间共生成31个预测窗口
‌2、状态空间模型结构‌

x(t)=[α1;01]∗x(t−1)+[β;0]∗ΔlnGNP(t)+w(t)y(t)=[10]∗x(t)+γ∗ΔlnGNP(t)+v(t)
包含AR(2)动态和GNP的外生影响
参数估计目标:α(自回归系数), β(GNP对状态的系数), γ(GNP对观测的直接系数)
3、‌数据预处理细节‌

对原始GNP数据取对数差分处理:ΔlnGNP = diff(log(GNP))
失业率使用一阶差分:ΔUR = diff(UR)

二、核心代码

%% 1. 导入年度经济数据
load Data_NelsonPlosser; % 加载Nelson-Plosser宏观经济数据集
% 数据集包含美国1909-1970年间的经济指标,包括:
%   GNPN - 名义国民生产总值 
%   UR   - 失业率
%   其他指标:CPI、工资率等

%% 2. 数据预处理
isNaN = any(ismissing(DataTable),2); % 标记包含缺失值的行
Z = DataTable.GNPN(~isNaN);  % 提取有效期的名义GNP数据(61×1)
y = DataTable.UR(~isNaN);    % 提取有效期的失业率数据(61×1)

%% 3. 创建时间序列数组
WindowSize = 31; % 滚动窗口大小(31年)
ForecastPeriod = numel(y) - WindowSize + 1; % 预测期数(61-31+1=31)

% 初始化存储矩阵
ZZ = zeros(ForecastPeriod, WindowSize); % GNP窗口数据(31×31)
yy = zeros(ForecastPeriod, WindowSize); % 失业率窗口数据(31×31)

% 创建滚动窗口数据集
m = 1;
for nYear = 1:ForecastPeriod
    ZZ(nYear,:) = Z(m:m+WindowSize-1); % 当前窗口的GNP数据
    yy(nYear,:) = y(m:m+WindowSize-1); % 当前窗口的失业率数据
    m = m + 1;
end

% 提取时间戳(1940-1970年)
Time = str2double(DataTable.Properties.RowNames(~isNaN));
Time = Time(end-ForecastPeriod+1:end); 

% 构建带时间戳的数组
ObsUnemployRate = [Time, yy]; % 失业率时间序列(31×32)
nGNP = [Time, ZZ];           % GNP时间序列(31×32)

%% 4. MATLAB状态空间模型递归估计
eUR = zeros(numel(Time),1);    % 存储预测失业率
param0 = [0.5; 0.1; -20];      % 初始参数 [A; B; D]

% 滚动窗口参数估计循环
for t = 0:numel(Time)-1
    % 数据准备
    dlZ = diff(log(ZZ(t+1,:)))';  % GNP对数差分(增长率)
    dy = diff(yy(t+1,:))';        % 失业率差分
    
    % 状态空间模型定义(调用rwAR2ParamMap函数)
    Mdl = ssm(@(c)rwAR2ParamMap(c,dy,dlZ));
    
    % 参数估计(最大似然估计)
    [Mdl, param0] = estimate(Mdl, dy, param0, 'Display', 'off');
    
    % 1步超前预测
    dyhat = forecast(Mdl, 1, dy,...
        'Predictors0', dlZ,...
        'PredictorsF', dlZ(end),...
        'Beta', param0(end));
    
    % 整合预测结果
    eUR(t+1) = dyhat + yy(t+1,end); % 预测值 = 差分预测 + 当前水平值
end

%% 5. 可视化MATLAB预测结果
figure;
axH = axes;
plot(axH, Time, y(end-numel(Time)+1:end),... % 实际失业率
    'Color', [0.9290 0.6940 0.1250], 'LineWidth', 1.2);
hold on; grid on;
plot(axH, Time, eUR,... % 预测失业率
    'Color', [0 0.4470 0.7410], 'LineWidth', 1.2);
axH.XLim(1) = Time(1);
axH.Color = [0.5020 0.5020 0.5020];
title('失业率预测对比 (%)');
legend(["实际值", "预测值"]);

在这里插入图片描述

三、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“117期”以及相应指令,即可获取对应下载方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2340575.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】线程ID、线程管理、与线程互斥

📚 博主的专栏 🐧 Linux | 🖥️ C | 📊 数据结构 | 💡C 算法 | 🌐 C 语言 上篇文章: 【Linux】线程:从原理到实战,全面掌握多线程编程!-CSDN博客 下…

【锂电池SOH估计】RF随机森林锂电池健康状态估计,锂电池SOH估计(Matlab完整源码和数据)

目录 效果一览程序获取程序内容代码分享研究内容基于随机森林(RF)的锂电池健康状态(SOH)估计算法研究摘要1. 引言2. 锂电池SOH评估框架3. 实验与结果分析4. 未来研究方向6. 结论效果一览 程序获取 获取方式一:文章顶部资源处直接下载:【锂电池SOH估计】RF随机森林锂电池…

【Pytorch 中的扩散模型】去噪扩散概率模型(DDPM)的实现

介绍 广义上讲,扩散模型是一种生成式深度学习模型,它通过学习到的去噪过程来创建数据。扩散模型有很多变体,其中最流行的通常是文本条件模型,它可以根据提示生成特定的图像。一些扩散模型(例如 Control-Net&#xff0…

121.在 Vue3 中使用 OpenLayers 实现去掉鼠标右键默认菜单并显示 Feature 信息

🎯 实现效果 👇 本文最终实现的效果如下: ✅ 地图初始化时绘制一个多边形; ✅ 鼠标 右键点击地图任意位置; ✅ 若命中 Feature,则弹出该图形的详细信息; ✅ 移除浏览器默认的右键菜单,保留地图交互的完整控制。 💡 整个功能基于 Vue3 + OpenLayers 完成,采用 Com…

进阶篇 第 6 篇:时间序列遇见机器学习与深度学习

进阶篇 第 6 篇:时间序列遇见机器学习与深度学习 (图片来源: Tara Winstead on Pexels) 在上一篇中,我们探讨了如何通过精心的特征工程,将时间序列预测问题转化为机器学习可以处理的监督学习任务。我们学习了如何创建滞后特征、滚动统计特征…

【音视频】音频解码实战

音频解码过程 ⾳频解码过程如下图所示: FFmpeg流程 关键函数 关键函数说明: avcodec_find_decoder:根据指定的AVCodecID查找注册的解码器。av_parser_init:初始化AVCodecParserContext。avcodec_alloc_context3:为…

DOCA介绍

本文分为两个部分: DOCA及BlueField介绍如何运行DOCA应用,这里以DNS_Filter为例子做大致介绍。 DOCA及BlueField介绍: 现代企业数据中心是软件定义的、完全可编程的基础设施,旨在服务于跨云、核心和边缘环境的高度分布式应用工作…

# 利用迁移学习优化食物分类模型:基于ResNet18的实践

利用迁移学习优化食物分类模型:基于ResNet18的实践 在深度学习的众多应用中,图像分类一直是一个热门且具有挑战性的领域。随着研究的深入,我们发现利用预训练模型进行迁移学习是一种非常有效的策略,可以显著提高模型的性能&#…

洗车小程序系统前端uniapp 后台thinkphp

洗车小程序系统 前端uniapp 后台thinkphp 支持多门店 分销 在线预约 套餐卡等

HCIP(综合实验2)

1.实验拓补图 2.实验要求 1.根据提供材料划分VLAN以及IP地址,PC1/PC2属于生产一部员工划分VLAN10,PC3属于生产二部划分VLAN20 2.HJ-1HJ-2交换机需要配置链路聚合以保证业务数据访问的高带宽需求 3.VLAN的放通遵循最小VLAN透传原则 4.配置MSTP生成树解决二层环路问题…

Linux mmp文件映射补充(自用)

addr一般为NULL由OS指明,length所需长度(4kb对齐),prot(权限,一般O_RDWR以读写), flag(MAP_SHARED(不刷新到磁盘上,此进程独有)和MAP_PRIVATE(刷新…

单元测试学习笔记(一)

自动化测试 通过测试工具/编程模拟手动测试步骤,全自动半自动执行测试用例,对比预期输出和实际输出,记录并统计测试结果,减少重复的工作量。 单元测试 针对最小的单元测试,Java中就是一个一个的方法就是一个一个的单…

【深度学习新浪潮】新视角生成的研究进展调研报告(2025年4月)

新视角生成(Novel View Synthesis)是计算机视觉与图形学领域的核心技术,旨在从单张或稀疏图像中生成任意视角的高保真图像,突破传统多视角数据的限制,实现对三维场景的自由探索。作为计算机视觉与图形学的交叉领域,近新视角生成年来在算法创新、应用落地和工具生态上均取…

OpenHarmony OS 5.0与Android 13显示框架对比

1. 架构概述 1.1 OpenHarmony OS 5.0架构 OpenHarmony OS 5.0采用分层架构设计,图形显示系统从底层到顶层包括: 应用层:ArkUI应用和第三方应用框架层:ArkUI框架、窗口管理API系统服务层:图形合成服务、窗口管理服务…

[Java] 泛型

目录 1、初识泛型 1.1、泛型类的使用 1.2、泛型如何编译的 2、泛型的上界 3、通配符 4、通配符上界 5、通配符下界 1、初识泛型 泛型:就是将类型进行了传递。从代码上讲,就是对类型实现了参数化。 泛型的主要目的:就是指定当前的容器…

Spark–steaming

实验项目: 找出所有有效数据,要求电话号码为11位,但只要列中没有空值就算有效数据。 按地址分类,输出条数最多的前20个地址及其数据。 代码讲解: 导包和声明对象,设置Spark配置对象和SparkContext对象。 使用Spark S…

深度学习训练中的显存溢出问题分析与优化:以UNet图像去噪为例

最近在训练一个基于 Tiny-UNet 的图像去噪模型时,我遇到了经典但棘手的错误: RuntimeError: CUDA out of memory。本文记录了我如何从复现、分析,到逐步优化并成功解决该问题的全过程,希望对深度学习开发者有所借鉴。 训练数据&am…

如何修复WordPress中“您所关注的链接已过期”的错误

几乎每个管理WordPress网站的人都可能遇到过“您关注的链接已过期”的错误,尤其是在上传插件或者主题的时候。本文将详细解释该错误出现的原因以及如何修复,帮助您更好地管理WordPress网站。 为什么会出现“您关注的链接已过期”的错误 为了防止资源被滥…

从零开始搭建Django博客①--正式开始前的准备工作

本文主要在Ubuntu环境上搭建,为便于研究理解,采用SSH连接在虚拟机里的ubuntu-24.04.2-desktop系统搭建的可视化桌面,涉及一些文件操作部分便于通过桌面化进行理解,最后的目标是在本地搭建好系统后,迁移至云服务器并通过…

健身房管理系统(springboot+ssm+vue+mysql)含运行文档

健身房管理系统(springbootssmvuemysql)含运行文档 健身房管理系统是一个全面的解决方案,旨在帮助健身房高效管理其运营。系统提供多种功能模块,包括会员管理、员工管理、会员卡管理、教练信息管理、解聘管理、健身项目管理、指导项目管理、健身器材管理…