波束形成(BF)从算法仿真到工程源码实现-第十节-非线性波束形成

news2025/4/16 9:45:28

一、概述

        本节我们基于webrtc的非线性波束形成进行代码仿真,并对仿真结果进行展示和分析总结。更多资料和代码可以进入https://t.zsxq.com/qgmoN ,同时欢迎大家提出宝贵的建议,以共同探讨学习。

二、仿真代码

2.1 常量参数

%  *@author : aflyingwolf
%  *@date   : 2025.4.15
%  *@file   : beamform_define_const_param.m
function beamform_param = beamform_define_const_param()
    beamform_param.kFftSize = 256;
    beamform_param.kNumFreqBins = (beamform_param.kFftSize / 2 + 1);
    beamform_param.kMaskTimeSmoothAlpha = 0.2;
    beamform_param.kMaskFrequencySmoothAlpha = 0.6;
    beamform_param.kCompensationGain = 0.2;
    beamform_param.kSpeedOfSoundMeterSeconds = 343.0;
    beamform_param.kBalance = 0.90;
    beamform_param.kBeamwidthConstant = 0.00002;
    beamform_param.kInterfNum = 4;
    beamform_param.kMaxDotProduct = 1e-6;
    beamform_param.kLowMeanStartHz = 125;
    beamform_param.kLowMeanEndHz = 400;
    beamform_param.kSampleRate = 16000;
end

2.2 参数初始化

%  *@author : aflyingwolf
%  *@date   : 2025.4.15
%  *@file   : beamform_reset.m
function beamform_inst = beamform_reset(beamform_inst, target_direction)
  beamform_inst.target_angle_radians = target_direction(1);
  kHighMeanStartHz = 2000;
  kHighMeanEndHz = 3000;
  beamform_inst.high_mean_start_bin = floor(kHighMeanStartHz * beamform_inst.param.kFftSize / ...
                                      beamform_inst.sample_rate_hz + 0.5);
  beamform_inst.high_mean_end_bin = floor(kHighMeanEndHz   * beamform_inst.param.kFftSize / ...
                                      beamform_inst.sample_rate_hz + 0.5);
  %InitInterfAngles
  target_direction_point = [cos(beamform_inst.target_angle_radians), ...
                            sin(beamform_inst.target_angle_radians), ...
                            0];
  clockwise_interf_direction_point = [cos(beamform_inst.target_angle_radians - beamform_inst.away_radians), ...
                                      sin(beamform_inst.target_angle_radians - beamform_inst.away_radians), ...
                                      0];
  if beamform_inst.array_sign > 0 && dot(beamform_inst.array_normal, target_direction_point) * ...
                                     dot(beamform_inst.array_normal, clockwise_interf_direction_point) >= 0
      beamform_inst.interf_angles_radians(1) = beamform_inst.target_angle_radians - beamform_inst.away_radians;
  else
      beamform_inst.interf_angles_radians(1) = beamform_inst.target_angle_radians - beamform_inst.away_radians + pi;
  end
  counterclock_interf_direction_point = [cos(beamform_inst.target_angle_radians + beamform_inst.away_radians), ...
                                      sin(beamform_inst.target_angle_radians + beamform_inst.away_radians), ...
                                      0];
  if beamform_inst.array_sign > 0 && dot(beamform_inst.array_normal, target_direction_point) * ...
                                     dot(beamform_inst.array_normal, counterclock_interf_direction_point) >= 0
      beamform_inst.interf_angles_radians(2) = beamform_inst.target_angle_radians + beamform_inst.away_radians;
  else
      beamform_inst.interf_angles_radians(2) = beamform_inst.target_angle_radians + beamform_inst.away_radians - pi;
  end

  %wj add 
  clockwise_interf_direction_point = [cos(beamform_inst.target_angle_radians - beamform_inst.away_radians2), ...
                                      sin(beamform_inst.target_angle_radians - beamform_inst.away_radians2), ...
                                      0];
  if beamform_inst.array_sign > 0 && dot(beamform_inst.array_normal, target_direction_point) * ...
                                     dot(beamform_inst.array_normal, clockwise_interf_direction_point) >= 0
      beamform_inst.interf_angles_radians(3) = beamform_inst.target_angle_radians - beamform_inst.away_radians2;
  else
      beamform_inst.interf_angles_radians(3) = beamform_inst.target_angle_radians - beamform_inst.away_radians2 + pi;
  end

  counterclock_interf_direction_point = [cos(beamform_inst.target_angle_radians + beamform_inst.away_radians2), ...
                                      sin(beamform_inst.target_angle_radians + beamform_inst.away_radians2), ...
                                      0];
  if beamform_inst.array_sign > 0 && dot(beamform_inst.array_normal, target_direction_point) * ...
                                     dot(beamform_inst.array_normal, counterclock_interf_direction_point) >= 0
      beamform_inst.interf_angles_radians(4) = beamform_inst.target_angle_radians + beamform_inst.away_radians2;
  else
      beamform_inst.interf_angles_radians(4) = beamform_inst.target_angle_radians + beamform_inst.away_radians2 - pi;
  end

  %InitDelaySumMasks
  for t = 1:1:beamform_inst.param.kNumFreqBins
      freq_in_hertz = (t-1) / beamform_inst.param.kFftSize * beamform_inst.sample_rate_hz;
      for k = 1:1:beamform_inst.num_input_channels
          distance = cos(beamform_inst.target_angle_radians) * beamform_inst.array_geometry(k,1) + ...
                     sin(beamform_inst.target_angle_radians) * beamform_inst.array_geometry(k,2);
          phase_shift = 2.0 * pi * distance * freq_in_hertz / beamform_inst.param.kSpeedOfSoundMeterSeconds;
          beamform_inst.delay_sum_masks(t,k) = complex(cos(phase_shift), sin(phase_shift));
      end
  end
  beamform_inst.delay_sum_masks = beamform_inst.delay_sum_masks/sqrt(beamform_inst.num_input_channels);

  %InitTargetCovMats
  for t = 1:1:beamform_inst.param.kNumFreqBins
      beamform_inst.target_cov_mats(t,:,:) = beamform_inst.delay_sum_masks(t,:).' * conj(beamform_inst.delay_sum_masks(t,:));
      xx = trace(squeeze(beamform_inst.target_cov_mats(t,:,:)));
      beamform_inst.target_cov_mats(t,:,:) = beamform_inst.target_cov_mats(t,:,:) / xx;
  end

  %InitInterfCovMats
  for t = 1:1:beamform_inst.param.kNumFreqBins
      for k = 1:1:beamform_inst.param.kInterfNum
          interf_cov_vector = complex(zeros(1, beamform_inst.num_input_channels));
          freq_in_hertz = (t-1) / beamform_inst.param.kFftSize * beamform_inst.sample_rate_hz;
          for s = 1:1:beamform_inst.num_input_channels
            distance = cos(beamform_inst.interf_angles_radians(k)) * beamform_inst.array_geometry(s,1) + ...
                       sin(beamform_inst.interf_angles_radians(k)) * beamform_inst.array_geometry(s,2);
            phase_shift = 2.0 * pi * distance * freq_in_hertz / beamform_inst.param.kSpeedOfSoundMeterSeconds;
            interf_cov_vector(s) = complex(cos(phase_shift), sin(phase_shift));
          end
          interf_cov_vector_transposed = interf_cov_vector.';
          beamform_inst.interf_cov_mats(t, k,:,:) = interf_cov_vector_transposed * conj(interf_cov_vector);
          xx = trace(squeeze(beamform_inst.interf_cov_mats(t, k,:,:)));
          beamform_inst.interf_cov_mats(t, k,:,:) = beamform_inst.interf_cov_mats(t, k,:,:) / xx;
          beamform_inst.interf_cov_mats(t, k,:,:) = beamform_inst.interf_cov_mats(t, k,:,:) * beamform_inst.param.kBalance;
          beamform_inst.interf_cov_mats(t, k,:,:) = squeeze(beamform_inst.interf_cov_mats(t, k,:,:)) + squeeze(beamform_inst.uniform_cov_mat(t,:,:));
      end
  end

  %NormalizeCovMats
  for t = 1:1:beamform_inst.param.kNumFreqBins
      xx = conj(beamform_inst.delay_sum_masks(t,:)) * ...
           squeeze(beamform_inst.target_cov_mats(t,:,:)) * beamform_inst.delay_sum_masks(t,:).';
      xx = real(xx);
      xx = max(xx, 0);
      beamform_inst.rxiws(t) = xx;
      for k = 1:1:beamform_inst.param.kInterfNum
          xx = conj(beamform_inst.delay_sum_masks(t,:)) * ...
               squeeze(beamform_inst.interf_cov_mats(t,k,:,:)) * beamform_inst.delay_sum_masks(t,:).';
          xx = real(xx);
          xx = max(xx, 0);
          beamform_inst.rpsiws(t,k) = xx;
      end
  end
end

2.3 初始化句柄

%  *@author : aflyingwolf
%  *@date   : 2025.4.15
%  *@file   : beamform_instance.m
function beamform_inst = beamform_instance(beamform_param, sample_rate_hz, array_geometry, mic_num, target_direction)
  beamform_inst.param = beamform_param;
  beamform_inst.sample_rate_hz = sample_rate_hz;
  beamform_inst.num_input_channels = mic_num;
  beamform_inst.array_geometry = array_geometry - mean(array_geometry, 1);
  micArray = mic_array();
  [beamform_inst.array_sign, beamform_inst.array_normal] = micArray.direction(beamform_inst.array_geometry);
  beamform_inst.target_angle_radians = target_direction(1);
  beamform_inst.away_radians = pi/4.0;
  beamform_inst.away_radians2 = pi/2.0;
  beamform_inst.high_pass_postfilter_mask = 1.0;
  beamform_inst.time_smooth_mask = ones(1,beamform_param.kNumFreqBins);
  beamform_inst.final_mask = ones(1,beamform_param.kNumFreqBins);
  beamform_inst.wave_numbers = ones(1,beamform_param.kNumFreqBins);
  beamform_inst.mask_thresholds = ones(1,beamform_param.kNumFreqBins);
  beamform_inst.interf_angles_radians = ones(1, beamform_param.kInterfNum);
  for t = 1:1:beamform_param.kNumFreqBins
    freq_hz = (t-1) / beamform_param.kFftSize * beamform_inst.sample_rate_hz;
    beamform_inst.wave_numbers(t) = 2 * pi * freq_hz / beamform_param.kSpeedOfSoundMeterSeconds;
    beamform_inst.mask_thresholds(t) = beamform_inst.num_input_channels * beamform_inst.num_input_channels * ...
                                       beamform_param.kBeamwidthConstant * beamform_inst.wave_numbers(t) *...
                                       beamform_inst.wave_numbers(t);

  end


  beamform_inst.delay_sum_masks = complex(zeros(beamform_param.kNumFreqBins, beamform_inst.num_input_channels));
  beamform_inst.target_cov_mats = complex(zeros(beamform_param.kNumFreqBins, ...
                                           beamform_inst.num_input_channels, beamform_inst.num_input_channels));
  beamform_inst.uniform_cov_mat = complex(zeros(beamform_param.kNumFreqBins, ...
                                           beamform_inst.num_input_channels, beamform_inst.num_input_channels));
  beamform_inst.interf_cov_mats = complex(zeros(beamform_param.kNumFreqBins, ...
                                           beamform_param.kInterfNum, ...
                                           beamform_inst.num_input_channels, beamform_inst.num_input_channels));
  beamform_inst.eig_m = complex(zeros(1, beamform_inst.num_input_channels));


  beamform_inst.low_mean_start_bin = floor(beamform_param.kLowMeanStartHz * beamform_param.kFftSize / ...
                                           beamform_inst.sample_rate_hz + 0.5);
  beamform_inst.low_mean_end_bin = floor(beamform_param.kLowMeanEndHz   * beamform_param.kFftSize / ...
                                           beamform_inst.sample_rate_hz + 0.5);
  array_distance = micArray.distance(beamform_inst.array_geometry);
  for t = 1:1:beamform_param.kNumFreqBins
%     diffuse_cov = zeros(beamform_inst.num_input_channels, beamform_inst.num_input_channels);
    if beamform_inst.wave_numbers(t) > 0
      diffuse_cov = besselj(0, beamform_inst.wave_numbers(t)*array_distance);
    else
      diffuse_cov = eye(beamform_inst.num_input_channels);
    end
    diffuse_cov = diffuse_cov/6.0;
    beamform_inst.uniform_cov_mat(t,:,:) = complex(diffuse_cov) * (1 - beamform_param.kBalance);
  end

  target_direction(2) = 0.0;
  target_direction(3) = 1.0;

  beamform_inst = beamform_reset(beamform_inst, target_direction);
end

2.4 逻辑处理

%  *@author : aflyingwolf
%  *@date   : 2025.4.15
%  *@file   : beamform_audio_process.m

function output = beamform_audio_process(wav_data, array_geometry, sample_rate_hz, target_direction)

    beamform_param = beamform_define_const_param();
    %start bf
    beamform_inst = beamform_instance(beamform_param, sample_rate_hz, array_geometry, size(array_geometry, 1), target_direction);
    %end bf
%     %start xh
%     beamform_inst = cell(1, 360);
%     for k=1:20:360
%         target_direction = k * pi / 180;
%         kk = beamform_instance(beamform_param, sample_rate_hz, array_geometry, size(array_geometry, 1), target_direction);
%         beamform_inst{k} = kk;
%     end
%     P = zeros(1,length(1:20:360));
% 
%     %end xh
    num_channel = size(wav_data, 2);
    num_points = size(wav_data, 1);
    num_frames = fix((num_points-beamform_param.kFftSize)/(beamform_param.kFftSize/2)) + 1;
    num_points = num_frames * beamform_param.kFftSize/2 + beamform_param.kFftSize/2;
    window = reshape(kbdwin(beamform_param.kFftSize, 1.5),1,[]);
    spec = zeros(num_frames, beamform_param.kFftSize, num_channel);
    output = zeros(1, num_points);
    for ch = 1:num_channel
        frames = enframe(wav_data(:,ch), window, (beamform_param.kFftSize/2));
        frames = fft(frames, beamform_param.kFftSize, 2);
        spec(:,:,ch) = frames;
    end
%     %start doa
%     c = 340;
%     Nele = size(wav_data, 2);
%     omega = zeros(beamform_param.kNumFreqBins,1);
%     H = zeros(360,beamform_param.kNumFreqBins,Nele);
%     alpha = 0.0;
%     r = 0.0463;
% 
%     theta = 90*pi/180; %固定一个俯仰角
%     gamma = [0 300 240 180 120 60]*pi/180;
%     step = 5;
% 
%     starts = 1;
%     ends = beamform_param.kFftSize/2+1;
%     for f = 1:step:360
%         tao = r*sin(theta)*cos((f)/180*pi-gamma)/c;     %方位角 0 < angle <360
%         for k = starts:1:ends
%             omega(k) = 2*pi*(k-1)*sample_rate_hz/beamform_inst.param.kFftSize;   
%             % steering vector
%             H(f,k,:) = exp(-1j*omega(k)*tao);
%         end
%     end
% 
%     P = zeros(1,length(1:step:360));
%     %end doa
    h = waitbar(0,'1','name','Simulation');
    for f = 1:1:num_frames
        s=sprintf('Simulation in process:%d',ceil(f/num_frames*100));
        waitbar(f/num_frames,h,[s '%']);
        in_frame_fft = squeeze(spec(f,:,:)).';
        in_frame_fft = in_frame_fft.';
        in_frame_fft = in_frame_fft(1:beamform_param.kNumFreqBins,:);

%         %start doa
%         t = 0;
%         for f_doa = 1:step:360
%             filter = squeeze(H(f_doa,:,:));
%             x_fft=bsxfun(@times, in_frame_fft,filter);
%             % phase transformed
%             x_fft = bsxfun(@rdivide, x_fft,abs(in_frame_fft));
%             yf = sum(x_fft,2);
%             t = t+1;
%             %beamformed output energy
%             P(t) = alpha * P(t) + (1-alpha) * yf'*yf;
%         end
%         index = 0;
%         value1 = -1;
%         P = real(P);
%         for k = 1:step:length(1:step:360)
%             if (P(k) - value1) > 1e-6
%                 value1 = P(k);
%                 index = k;
%             end
%         end
%         ang = (index)*step;
%         ang1 = ang;
% 
%         target_direction = ang1 * pi / 180;
%         beamform_inst = beamform_reset(beamform_inst, target_direction);
% 
%         %end doa
%         %start xh
%         t=1;
%         index = 0;
%         value1 = -1;
%         for k=1:20:360
%             kk = beamform_inst{k};
%             [out_frame_fft2, kk] = beamform_process_block(kk, in_frame_fft);
%             beamform_inst{k} = kk;
% 
%             PP = out_frame_fft2 * out_frame_fft2';
%             t = t + 1;
%             if (PP - value1) > eps
%                 value1 = PP;
%                 out_frame_fft = out_frame_fft2;
%             end
%         end
%         
%         %end xh
        %start bf
        [out_frame_fft, beamform_inst] = beamform_process_block(beamform_inst, in_frame_fft);
        %endbf
%         out_frame_fft = in_frame_fft(:,3).';
        out_frame_fft = [out_frame_fft, conj(fliplr(out_frame_fft(2:(beamform_param.kNumFreqBins-1))))];
        out_frame_pcm = ifft(out_frame_fft);
        out_frame_pcm = out_frame_pcm .* window;
        f_p = (f-1)*(beamform_param.kFftSize/2)+1;
        output(f_p:f_p+beamform_param.kFftSize-1) = output(f_p:f_p+beamform_param.kFftSize-1) + out_frame_pcm;
    end
    output = real(output);
    delete(h);
end

2.5 核心代码

%  *@author : aflyingwolf
%  *@date   : 2025.4.15
%  *@file   : beamform_process_block.m
function [output,beamform_inst] = beamform_process_block(beamform_inst, input)
  for k = beamform_inst.low_mean_start_bin+1:1:beamform_inst.high_mean_end_bin
      beamform_inst.eig_m = input(k,:);
      eig_m_norm_factor = sqrt(beamform_inst.eig_m * beamform_inst.eig_m');
      if abs(eig_m_norm_factor) > eps
          beamform_inst.eig_m = beamform_inst.eig_m / eig_m_norm_factor;
      end
      rxim = conj(beamform_inst.eig_m) * squeeze(beamform_inst.target_cov_mats(k,:,:)) * beamform_inst.eig_m.';
      rxim = real(rxim);
      rxim = max(rxim, 0);
      ratio_rxiw_rxim = 0;
      if rxim > 0.0
          ratio_rxiw_rxim = beamform_inst.rxiws(k) / rxim;
      end
      rmw = abs(conj(beamform_inst.delay_sum_masks(k,:)) * beamform_inst.eig_m.');
      rmw = rmw * rmw;
      rmw_r = real(rmw);
      beamform_inst.new_mask(k) = 1.0;
      for t = 1:1:beamform_inst.param.kInterfNum
           kMaskMinimum = 0.01;
           rpsim = conj(beamform_inst.eig_m) * squeeze(beamform_inst.interf_cov_mats(k,t,:,:)) * beamform_inst.eig_m.';
           rpsim = real(rpsim);
           rpsim = max(rpsim, 0);
           ratio = 0.0;
           if rpsim > 0
               ratio = beamform_inst.rpsiws(k,t) / rpsim;
           end
           numrator = rmw_r - ratio;
           denominator = ratio_rxiw_rxim - ratio;
           mask = 1.0;
           if denominator > beamform_inst.mask_thresholds(k)
               lambda = numrator / denominator;
               mask = lambda * ratio_rxiw_rxim / rmw_r;
               if mask < kMaskMinimum
                   mask = kMaskMinimum;
               end
           end
           beamform_inst.new_mask(k) = beamform_inst.new_mask(k) * mask;
      end
  end
  for k = beamform_inst.low_mean_start_bin+1:1:beamform_inst.high_mean_end_bin
      beamform_inst.time_smooth_mask(k) = beamform_inst.param.kMaskTimeSmoothAlpha * beamform_inst.new_mask(k) + ...
                                          (1 - beamform_inst.param.kMaskTimeSmoothAlpha) * beamform_inst.time_smooth_mask(k);
  end
  %ApplyLowFrequencyCorrection
  low_frequency_mask = mean(beamform_inst.time_smooth_mask(beamform_inst.low_mean_start_bin+1:...
                                                           beamform_inst.low_mean_end_bin));
  beamform_inst.time_smooth_mask(1:beamform_inst.low_mean_start_bin) = low_frequency_mask;

  %ApplyHighFrequencyCorrection
  high_pass_postfilter_mask = mean(beamform_inst.time_smooth_mask(beamform_inst.high_mean_start_bin:...
                                                                  beamform_inst.high_mean_end_bin));
  beamform_inst.time_smooth_mask(beamform_inst.high_mean_end_bin+1:beamform_inst.param.kNumFreqBins) = high_pass_postfilter_mask;

  %ApplyMaskFrequencySmoothing
  beamform_inst.final_mask = beamform_inst.time_smooth_mask;
  for t = beamform_inst.low_mean_start_bin+1:1:beamform_inst.high_mean_end_bin
      beamform_inst.final_mask(t) = beamform_inst.param.kMaskFrequencySmoothAlpha * beamform_inst.final_mask(t) + ...
                                    (1 - beamform_inst.param.kMaskFrequencySmoothAlpha) * beamform_inst.final_mask(t-1);
  end
  for t = beamform_inst.high_mean_end_bin + 1:-1:2
      beamform_inst.final_mask_(t-1) = beamform_inst.param.kMaskFrequencySmoothAlpha * beamform_inst.final_mask(t-1) + ...
                                 (1 - beamform_inst.param.kMaskFrequencySmoothAlpha) * beamform_inst.final_mask(t);
  end

  %ApplyMasks
  for t = 1:1:beamform_inst.param.kNumFreqBins
      output(t) = input(t,:) * beamform_inst.delay_sum_masks(t,:)';
%       output(t) = input(t,1);
      output(t) = output(t) * beamform_inst.final_mask(t) * beamform_inst.param.kCompensationGain;
  end
  for t = 1:1:4
      output(t) = complex(0);
  end



end


   

2.6 导向矢量计算

%  *@author : aflyingwolf
%  *@date   : 2025.4.15
%  *@file   : mic_array.m
function A = mic_array()
    A.direction=@mic_direction;
    A.distance=@mic_distance;
    A.steer=@mic_steer_vec;
end

% 两线垂直 == 点积和=0
% 两线平行 ==  叉积长度为0 

function [sign , array_normal_direction] = mic_direction(array)

    num_mic = size(array,1);
    assert(num_mic>=2);
    
    sign = -1; % 线性1, 平面2

    is_linear_array = true;
    first_pair_direction = array(2,:) - array(1,:);
    for i=3:num_mic
        direction = array(i,:) - array(i-1,:);
        if abs(norm(cross(first_pair_direction, direction))) > eps
            is_linear_array = false;
            break;
        end
    end
    if is_linear_array
        sign = 1;  
        array_normal_direction = [first_pair_direction(2), -first_pair_direction(1), 0];
        return ;
    end

    assert(num_mic>=3);
    second_pair_direction = array(3,:) - array(2,:);
    normal_direction = cross(first_pair_direction, second_pair_direction);
    
    is_plane_array = true;
    for i=4:num_mic
        pair_direction = array(i,:) - array(i-1,:);
        if dot(normal_direction,pair_direction) > eps
            is_plane_array = false;
            break;
        end
    end
    if is_plane_array
        sign = 2;
        array_normal_direction = normal_direction;
        return ;
    end

end


function array_distance = mic_distance(array)

    num_mic = size(array, 1);
    array_distance = zeros(num_mic, num_mic);
    for t=1:num_mic
        for s=t+1:num_mic
            d = norm(array(t,:)-array(s,:));
            array_distance(t,s) = d;
            array_distance(s,t) = d;
        end
    end
end

function steer = mic_steer_vec(array, angle, f, c)
    angle_radians = angle/180*pi;
    num_mic = size(array,1);
    dis = zeros(1, num_mic);
    fz = reshape(f,[],1);
    for i = 1:num_mic
        dis(i) = cos(angle_radians)*array(i,1) + sin(angle_radians)*array(i,2);
    end
    phase = 2*pi*fz*dis/c;
    steer = complex(cos(phase), sin(phase));
end

2.7 测试demo

%  *@author : aflyingwolf
%  *@date   : 2025.4.15
%  *@file   : test_beamform.m

input_wav_file = 'simulate_role1_0_t60_0.2_role2_180_t60_0.2.wav';
%0.0463 0.0 0.0 0.02315 -0.0401 0.0 -0.02315 -0.0401 0.0 -0.0463 0.0 0.0 -0.02315 0.0401 0.0 0.02315 0.0401 0.0
array_geometry = [0.0463,  0.0,     0.0; 0.02315,  -0.0401, 0.0; 
                -0.02315,  -0.0401, 0.0;  -0.0463,  0.0,     0.0;
                -0.02315,  0.0401,  0.0;  0.02315,  0.0401,  0.0];

target_direction = 0 * pi / 180;

[wav_data, sample_rate_hz] = audioread(input_wav_file);

output = beamform_audio_process(wav_data, array_geometry, sample_rate_hz, [target_direction, 0, 1]);
% output = beamform_audio_process_fromfile(wav_data, array_geometry, sample_rate_hz, [target_direction, 0, 1]);
% output = wav_data;
output_filename = input_wav_file(1:(length(input_wav_file)-4));
output_filename = output_filename + "_webrtc_t0.wav";

audiowrite(output_filename, output, sample_rate_hz);



三、结果展示

3.1 0度方向的波束

3.2 180度方向的波束

四、总结

        本节我们实现了基于webrtc的非线性波束形成算法仿真,从结果上看,降噪效果较好,可以很好的去除干扰,但是引入了非线性,对后面去除平稳噪声不利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2335869.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《忘尘谷》音阶与调性解析

一、音高与音名的对应关系 根据搜索结果及音乐理论&#xff0c;结合《忘尘谷》的曲谱信息&#xff0c;其音阶与调性分析如下&#xff1a; 调性判定 原曲调性为 D调&#xff08;原曲标注为D调&#xff09;&#xff0c;但曲谱编配时采用 C调指法&#xff0c;通过变调夹夹2品&…

App测试小工具

前言 最近app测试比较多&#xff0c;每次都得手动输入日志tag&#xff0c;手动安装&#xff0c;测完又去卸载&#xff0c;太麻烦。就搞了小工具使用。 效果预览 每次测试完成&#xff0c;点击退出本次测试&#xff0c;就直接卸载了&#xff0c;usb插下一个手机又可以继续测了…

数智读书笔记系列029 《代数大脑:揭秘智能背后的逻辑》

《代数大脑:揭秘智能背后的逻辑》书籍简介 作者简介 加里F. 马库斯(Gary F. Marcus)是纽约大学心理学荣休教授、人工智能企业家,曾创立Geometric Intelligence(后被Uber收购)和Robust.AI公司。他在神经科学、语言学和人工智能领域发表了大量论文,并著有《重启AI》等多部…

Apache Kafka UI :一款功能丰富且美观的 Kafka 开源管理平台!!

Apache Kafka UI 是一个免费的开源 Web UI&#xff0c;用于监控和管理 Apache Kafka 集群&#xff0c;可方便地查看 Kafka Brokers、Topics、消息、Consumer 等情况&#xff0c;支持多集群管理、性能监控、访问控制等功能。 1 特征 多集群管理&#xff1a; 在一个地方监控和管理…

临床协调简历模板

模板信息 简历范文名称&#xff1a;临床协调简历模板&#xff0c;所属行业&#xff1a;其他 | 职位&#xff0c;模板编号&#xff1a;C1S3WO 专业的个人简历模板&#xff0c;逻辑清晰&#xff0c;排版简洁美观&#xff0c;让你的个人简历显得更专业&#xff0c;找到好工作。希…

【第45节】windows程序的其他反调试手段上篇

目录 引言 一、通过窗口类名和窗口名判断 二、检测调试器进程 三、父进程是否是Explorer 四、RDTSC/GetTickCount时间敏感程序段 五、StartupInfo结构的使用 六、使用BeingDebugged字段 七、 PEB.NtGlobalFlag,Heap.HeapFlags,Heap.ForceFlags 八、DebugPort:CheckRem…

Linux常见指令介绍上(入门级)

1. ls指令 功能&#xff1a;显示出当前目录下的所有子目录与文件。 PS:注意显示的是当前文件下的子目录与文件。 以下这些是可以和ls配套使用的一些选项 -a 列出目录下的所有文件&#xff0c;包括以 . 开头的隐含文件。 -d 将目录象文件一样显示&#xff0c;而不是显示其下…

【版本控制】git命令使用大全

大家好&#xff0c;我是jstart千语。今天来总结一下git的使用命令&#xff0c;上文会先将git命令都列出来&#xff0c;便于快速寻找&#xff0c;然后还会对部分常用命令图文讲解&#xff0c;适合新手&#xff0c;让你快速地理解。最后还会总结在idea中使用git。如果有缺失的&am…

手阳明大肠经之合谷穴

个人主页&#xff1a;云纳星辰怀自在 座右铭&#xff1a;“所谓坚持&#xff0c;就是觉得还有希望&#xff01;” 又名&#xff1a;1.《针灸甲乙经》&#xff1a;虎口。 所属经络&#xff1a;手阳明大肠经 定位 在手背&#xff0c;第1、2掌骨间&#xff0c;当第2掌骨桡侧的中点…

【VUE3】练习项目——大事件后台管理

目录 0 前言 1 准备工作 1.1 安装pnpm 1.2 创建vue项目 1.3 Eslint & Prettier的配置 1.4 husky 提交代码检查 1.5 目录调整 1.6 VueRouter4 1.6.1 基础配置 1.6.2 路由跳转 1.7 引入 Element Plus 组件库 1.8 Pinia 1.8.1 优化 1.9 封装请求工具 1.9.1 安…

万字长篇————C语言指针学习汇总

经过一段时间的学习&#xff0c;我们已经接触到了C语言的很多知识了。不过目前我们接下来我们要接触C语言中一个最大的“门槛”&#xff1a;指针。 什么是指针&#xff1f; 在介绍指针之前&#xff0c;我们首先要明白变量与地址之间的关系。 举一个生活中的案例&#xff1a;一…

实验一 HDFS的Shell操作

一、实验目的 熟悉HDFS Shell的语法格式&#xff0c;完成对HDFS上文件和目录的一系列操作 二、实验要求 2.1 练习dfs常用的子命令 ① -ls ② -du ③ -mv ④ -cp ⑤ -rm ⑥ -put ⑦ -cat ⑧ -help ⑨ -mkdir ⑩ -get 2.2通过Shell脚本定时采集数据到HDFS 三、实…

复变函数摘记3

复变函数摘记3 5. 留数5.1 可去奇点、极点、本性奇点5.2 零点与极点的关系5.3 在无穷远点处的情形5.4 留数 5. 留数 \quad 如果函数 f ( z ) f(z) f(z) 在 z 0 z_0 z0​ 及 z 0 z_0 z0​ 的邻域内处处可导&#xff0c;那么称 f ( z ) f(z) f(z) 在点 z 0 z_0 z0​ 处解析。…

【行测】判断推理:类比推理 and 定义判断

> 作者&#xff1a;დ旧言~ > 座右铭&#xff1a;读不在三更五鼓&#xff0c;功只怕一曝十寒。 > 目标&#xff1a;掌握 类比推理 and 定义判断 基本题型&#xff0c;并能运用到例题中。 > 毒鸡汤&#xff1a;有些事情&#xff0c;总是不明白&#xff0c;所以我不会…

Java使用WebSocket视频拆帧进度处理与拆帧图片推送,结合Apipost进行调试

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency>Configuration public class WebSocketConfig {/*** 启动 WebSocket 服务器*/Beanpublic ServerEndpointE…

计算斐波那契数列

1.对于斐波那契数列的理解&#xff1a; (1)常规 该数列由兔子繁衍的想法产生&#xff0c;故又“兔子数列” 其数值为&#xff1a;1、1、2、3、5、8、13、21、34 从数学定义上走&#xff1a;F(0)1&#xff0c;F(1)1, F(n)F(n - 1)F(n - 2)&#xff08;n ≥ 2&#xff0c;n ∈…

JAVA如何操作文件?(超级详细)

目录 一、认识文件和相关知识 1.认识文件 2.⽬录 3.⽂件路径&#xff08;Path&#xff09; 4.文本文件和二进制文件的区分 二、File类操作文件 1.构造方法 2.方法 2.1 方法表 2.2 get相关的方法和构造方法 2.2.1 “.” 和 “..” 2.3 is相关的方法 2.4 删除相关…

(2)VTK C++开发示例 --- 绘制多面锥体

文章目录 1. 概述2. CMake链接VTK3. main.cpp文件4. 演示效果 更多精彩内容&#x1f449;内容导航 &#x1f448;&#x1f449;VTK开发 &#x1f448; 1. 概述 VTK C开发示例程序&#xff1b; 使用C 和VTK绘制一个多面锥体。 环境说明系统ubuntu22.04、windows11cmake3.22、3.2…

(2025-04-12)向老主机箱中安装新买的显卡及固态硬盘

目录 1 引言2 显卡及其驱动的安装3 固态硬盘的安装及C盘扩容3.1 固态硬盘正确连接到主板上后&#xff0c;操作系统上面仍然不显示对应盘符怎么办&#xff1f;3.2 如何对C盘扩容&#xff1f;3.3 新问题&#xff1a;原有D盘程序不能运行 4 总结 1 引言 今天安装昨天买的新固态硬…

rk3588 驱动开发(一)字符设备开发

3.字符设备驱动开发 3.1 什么是字符设备驱动 字符设备&#xff1a;就是一个个字节&#xff0c;按照字节流进行读写操作的设备&#xff0c;读写是按照先后顺序的。 举例子&#xff1a;IIC 按键 LED SPI LCD 等 Linux 应用程序调用驱动程序流程&#xff1a; Linux中驱动加载成功…