深度学习(对抗)

news2025/4/15 22:34:09

数据预处理:像素标记与归一化

在 GAN 里,图像的确会被分解成一个个像素点来处理。在你的代码里,transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) 这部分对图像进行了预处理:

  • transforms.ToTensor():把图像转换为张量,也就是把图像的像素值转化为可以被神经网络处理的数值形式。
  • transforms.Normalize((0.5,), (0.5,)):对像素值进行归一化,将像素值的范围从 [0, 1] 转换到 [-1, 1]。这可以让训练过程更加稳定。

生成器:基于随机噪声生成假图像

生成器接收随机噪声作为输入,就像代码中的 noise = torch.randn(batch_size, z_dim).to(device),这里的 noise 是从标准正态分布中随机采样得到的。生成器的任务是把这个随机噪声转换为与真实图像相似的假图像,即 fake = gen(noise)。生成器通过一系列的神经网络层(在你的代码里是全连接层)对随机噪声进行变换,尝试学习到真实图像数据的分布。

判别器:判断图像真假

判别器接收真实图像和生成器生成的假图像作为输入,然后判断输入的图像是真实的还是假的。在代码中,disc_real = disc(real).view(-1) 和 disc_fake = disc(fake.detach()).view(-1) 分别表示判别器对真实图像和假图像的判断结果。判别器的输出是一个介于 [0, 1] 之间的概率值,越接近 1 表示判别器认为输入的图像是真实图像的可能性越大,越接近 0 则表示认为是假图像的可能性越大。

对比与优化

  • 判别器优化:判别器的目标是准确区分真实图像和假图像。代码中通过计算判别器对真实图像和假图像的损失,即 lossD_real = criterion(disc_real, torch.ones_like(disc_real)) 和 lossD_fake = criterion(disc_fake, torch.zeros_like(disc_fake)),然后将两者的平均值作为判别器的总损失 lossD = (lossD_real + lossD_fake) / 2。接着使用反向传播算法 lossD.backward() 和优化器 opt_disc.step() 来更新判别器的参数,使其能够更好地区分真假图像。
  • 生成器优化:生成器的目标是生成能够欺骗判别器的假图像。代码中通过计算生成器生成的假图像被判别器判断为真实图像的损失,即 lossG = criterion(output, torch.ones_like(output)),然后使用反向传播算法 lossG.backward() 和优化器 opt_gen.step() 来更新生成器的参数,使其能够生成更逼真的假图像。

  • 真实图像损失(lossD_real
    在代码里,disc_real = disc(real).view(-1) 这行将真实图像 real 输入到判别器 disc 中,得到判别器对真实图像的判断结果 disc_real。每个元素代表判别器认为对应真实图像是真实图像的概率。
    lossD_real = criterion(disc_real, torch.ones_like(disc_real)) 这行使用二元交叉熵损失函数 criterion 来计算判别器对真实图像的损失。torch.ones_like(disc_real) 构建了一个和 disc_real 形状相同且元素全为 1 的张量,这代表真实图像的标签都应该是 1。二元交叉熵损失函数会衡量 disc_real 和全 1 张量之间的差异,差异越大,损失值就越大。

  • 假图像损失(lossD_fake
    disc_fake = disc(fake.detach()).view(-1) 把生成器生成的假图像 fake 输入到判别器中得到判断结果 disc_fake。这里使用 detach() 方法是为了防止在更新判别器参数时影响到生成器的参数。
    lossD_fake = criterion(disc_fake, torch.zeros_like(disc_fake)) 使用二元交叉熵损失函数计算判别器对假图像的损失。torch.zeros_like(disc_fake) 构建了一个和 disc_fake 形状相同且元素全为 0 的张量,这代表假图像的标签都应该是 0。

  • 总损失(lossD
    lossD = (lossD_real + lossD_fake) / 2 把真实图像损失和假图像损失取平均值作为判别器的总损失。这样做能让判别器在区分真实图像和假图像时保持平衡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2334574.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(PC+WAP)大气滚屏网站模板 电气电力设备网站源码下载

源码介绍 (PCWAP)大气滚屏网站模板 电气电力设备网站源码下载。PbootCMS内核开发的网站模板,该模板适用于滚屏网站模板、电气电力设备网站源码等企业,当然其他行业也可以做,只需要把文字图片换成其他行业的即可;PCWAP&#xff0c…

笔试专题(九)

文章目录 十字爆破(暴力)题解代码 比那名居的桃子(滑动窗口/前缀和)题解代码 分组(暴力枚举 优化二分)题解代码 十字爆破(暴力) 题目链接 题解 1. 暴力 预处理 2. 如果单纯的暴…

3 VS Code 配置优化与实用插件推荐:settings.json 详解、CodeGeeX 智能编程助手及插件离线安装方法

1 优化 settings.json 文件 1.1 settings.json 简介 settings.json 是 VS Code 的核心配置文件,用于存储用户的个性化设置和偏好。通过该文件,用户可以自定义和覆盖 VS Code 的默认行为,包括但不限于以下方面: 编辑器外观&#…

TA学习之路——1.6 PC手机图形API介绍

1前言 电脑的工作原理:电脑是由各种不同的硬件组成,由驱动软件驱使硬件进行工作。所有的软件工程师都会直接或者间接的使用到驱动。 定义:是一个图形库,用于渲染2D、3D矢量图形的跨语言、跨平台的应用程序接口(API)。…

Matlab 调制信号和fft变换

1、内容简介 Matlab 194-调制信号和fft变换 可以交流、咨询、答疑 2、内容说明 略 3、仿真分析 略 4、参考论文 略

100M/1000M 以太网静电浪涌防护方案

方案简介 以太网是一种生产较早且广泛应用的局域网通讯方式,同时也是一种协议,其核 心在于实现区域内(如办公室、学校等)的网络互联。根据数据传输速度的不同,以 太网大致可以划分为几个等级:标准以太网…

C语言中while的相关题目

一、题目引入 以下程序中,while循环的循环次数是多少次? 二、代码分析 首先要明确的一点 while循环是当循环条件为真 就会一直循环 不会停止 while中i是小于10的 说明i可以取到0 1 2 3 4 5 6 7 8 9 进入第一个if判断i小于1为真时执行continue i0是为真的 执行continue 后…

「Unity3D」图片导入选项取消Read/Write,就无法正确显示导入大小,以及Addressable打包无法正确显示的问题

如果在Edit -> Project Settings -> Editor中的“Load texture data on demand”勾选,就会让图片导入设置中,不勾选Read/Write,就无法正确显示纹理的大小数字。 更进一步的问题是,使用Addressable打包的时候, 如…

Xcode为不同环境配置不同的环境变量

一般有三种方式: 一、通过多Target 二、通过scheme,也就是多configurations 三、通过.xcconfig文件 先来看第二种方式:通过scheme,也就是多configurations,包括自定义User-settings 第一步:增加configurations,Xcode默认为我们生成了…

阿里通义实验室发布图片数字人项目LAM,实现高保真重建

简介 LAM项目结合了3D Gaussian Splatting(高斯点云渲染)和大规模预训练模型的优势,解决了传统头部重建方法效率低、依赖多数据的痛点。其背景源于AI生成内容(AIGC)领域对实时、高保真3D头像生成的需求,尤其…

镜像端口及观察端口的配置

配好路由器的各个接口的IP PC1ping PC3的IP,在路由器中抓2/0/0端口的包,可观察到无结果 输入observe-port interface g 2/0/0 命令配置观察端口 输入mirror to observe-port both命令 (其中both表示接收来去的数据包,inboun…

STM32——I2C通讯(软件模拟)

I2C概念 I2C:Inter-Integrated Circuit(内部集成电路) Philps公司80年代初期开发的,引脚少,硬件实现简单,可扩展性广泛地使用在系统内多个集成电路(IC)间的低速通讯 简单的双向两线制总线协议…

JetBrains Terminal 又发布新架构,Android Studio 将再次迎来新终端

不到一年的时间,JetBrains 又要对 Terminal 「大刀阔斧」,本次发布的新终端是重构后的全新的架构,而上一次终端大调整还是去年 8 月的 v2024.2 版本,并且在「Android Studio Ladybug | 2024.2.1」也被引入。 不知道你们用不用内置…

论文:Generalized Category Discovery with Large Language Models in the Loop

论文下载地址:Generalized Category Discovery with Large Language Models in the Loop - ACL Anthology 1、研究背景 尽管现代机器学习系统在许多任务上取得了优异的性能,绝大多数都遵循封闭世界的设置,假设训练和测试数据来自同一组预定义…

第十六届蓝桥杯 省赛C/C++ 大学B组

编程题目现在在洛谷上都可以提交了。 未完待续,写不动了。 C11 编译命令 g A.cpp -o A -Wall -lm -stdc11A. 移动距离 本题总分:5 分 问题描述 小明初始在二维平面的原点,他想前往坐标 ( 233 , 666 ) (233, 666) (233,666)。在移动过程…

【计网】网络交换技术之分组交换(复习自用,重要1)

复习自用的,处理得比较草率,复习的同学或者想看基础的同学可以看看,大佬的话可以不用浪费时间在我的水文上了 另外两种交换技术可以直接点击链接访问相关笔记: 电路交换 报文交换 一、分组交换的定义 1.定义 分组交换&#x…

解密CHASE-SQL和XiYan-SQL多智能体AI如何最终实现TEXT2SQL的突破

想象一个世界,无论技术背景如何,任何人都能轻松查询海量数据库、挖掘深层洞察。比如:“我想知道安徽地区最畅销电子产品的第三季度销售额?”——只需一句话。“去年营销支出与客户获取成本之间的相关性如何?”——像聊天一样输入问题。这就是Text-to-SQL的承诺:将人类语言…

思考力提升的黄金标准:广度、深度与速度的深度剖析

文章目录 引言一、广度的拓展:构建多元知识网络1.1 定义与重要性1.2 IT技术实例与提升策略小结:构建多元知识网络,提升IT领域思考力广度 二、深度的挖掘:追求知识的精髓2.1 定义与重要性2.2 IT技术实例与提升策略小结:…

web自动化:下拉选择框、弹出框、滚动条的操作

web自动化:下拉选择框、弹出框、滚动条的操作 一、下拉选择框 1、导包 from selenium.webdriver.support.select inport Select 2、实例化对象 Select(element) 3、常用方法 通过option索引来定位,从0开始:select_by_index(index)通过…

数字人:打破次元壁,从娱乐舞台迈向教育新课堂(4/10)

摘要:数字人正从娱乐领域的璀璨明星跨界到教育领域的智慧导师,展现出无限潜力。从虚拟偶像、影视游戏到直播短视频,数字人在娱乐产业中大放异彩,创造巨大商业价值。在教育领域,数字人助力个性化学习、互动课堂和虚拟实…