部署大模型不再难:DeepSeek + 腾讯云 HAI 实战教程

news2025/4/15 10:11:35

在这里插入图片描述

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:华为HDE/HDG

我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用、前沿科技资讯、产品评测与使用体验。我特别关注云服务产品评测、AI 产品对比、开发板性能测试以及技术报告,同时也会提供产品优缺点分析、横向对比,并分享技术沙龙与行业大会的参会体验。我的目标是为读者提供有深度、有实用价值的技术洞察与分析。

展菲:您的前沿技术领航员
👋 大家好,我是展菲!
📱 全网搜索“展菲”,即可纵览我在各大平台的知识足迹。
📣 公众号“Swift社区”,每周定时推送干货满满的技术长文,从新兴框架的剖析到运维实战的复盘,助您技术进阶之路畅通无阻。
💬 微信端添加好友“fzhanfei”,与我直接交流,不管是项目瓶颈的求助,还是行业趋势的探讨,随时畅所欲言。
📅 最新动态:2025 年 3 月 17 日
快来加入技术社区,一起挖掘技术的无限潜能,携手迈向数字化新征程!


文章目录

    • 摘要
    • 引言
    • HAI 是个什么东西?
    • 如何在 HAI 平台部署 DeepSeek 模型
      • 创建 HAI 服务
      • 编写模型推理服务代码
        • app.py
        • requirements.txt
      • 部署并测试 API
    • 实际场景应用:做个轻量 AI 助手 API
    • 代码运行示例
    • 性能分析:成本 & 效率
      • 时间复杂度
      • 空间复杂度
    • QA 环节
      • Q1:我可以换模型吗?
      • Q2:怎么调高并发?
      • Q3:我能接数据库、缓存服务吗?
    • 总结

摘要

如果你正准备在云上部署像 DeepSeek 这样的开源大模型,但又不想从零折腾容器、模型加速和 API 服务,腾讯云 HAI 平台就能帮你把这些流程一步步跑通。本文将带你体验用 HAI 平台快速部署 DeepSeek 模型,封装 API 并提供在线推理的完整流程,还附上了可运行的 Demo 和部署小技巧,帮助你避坑。

引言

部署大模型听起来高大上,其实最常见的痛点无非这几件事:

  • 模型体积太大,推理服务卡顿

  • 配环境、写 Dockerfile、跑服务太折腾

  • 不会写 API 或者不会把模型服务部署在线上

  • 想部署在云端,但不知道该选哪种云资源和平台

好消息是,腾讯云的 HAI 平台把这些细节都提前帮你想好了。不管你是想玩模型、做 demo,还是直接部署个产品 MVP,用 HAI 都很适合。

HAI 是个什么东西?

简单来说,HAI(High-performance AI Infra)平台是腾讯云为 AI 模型部署专门做的云平台。它的定位是「模型即服务」,你只需要准备模型代码,剩下的部署、环境配置、API 网关、负载均衡、资源调度……它都替你搞定了。

支持的能力包括:

  • 一键部署 HuggingFace、ChatGLM、DeepSeek、InternLM 等开源模型

  • GPU 资源调度优化,按需使用

  • 自动生成推理 API,可在线测试

  • 支持模型微调、增量训练等高级玩法

如何在 HAI 平台部署 DeepSeek 模型

创建 HAI 服务

  1. 进入 HAI 控制台;

  2. 选择「新建服务」;

  3. 模型类型选择「自定义模型」;

  4. 镜像选择:可以选平台默认提供的 huggingface-pytorch 镜像;

  5. 挂载代码仓库或模型路径。

模型代码路径推荐结构如下:

project/
├── app.py
├── model/
│   └── deepseek_model.bin
├── requirements.txt
└── Dockerfile(可选)

编写模型推理服务代码

这是你核心需要写的部分。示例代码如下:

app.py
from fastapi import FastAPI, Request
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM

app = FastAPI()

# 初始化模型
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b")
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-llm-7b").cuda()

class RequestBody(BaseModel):
    prompt: str

@app.post("/generate")
def generate_text(data: RequestBody):
    inputs = tokenizer(data.prompt, return_tensors="pt").to("cuda")
    output = model.generate(**inputs, max_length=100)
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    return {"response": response}
requirements.txt
transformers==4.36.2
torch==2.1.0
fastapi==0.95.0
uvicorn==0.23.2

部署并测试 API

  • 打包上传代码或挂载仓库;

  • 选择启动命令:uvicorn app:app --host 0.0.0.0 --port 8000

  • 等待部署完成后,在控制台可以直接测试 /generate 接口

实际场景应用:做个轻量 AI 助手 API

如果你正在构建一个 AI 应用,比如:

  • 智能问答服务

  • 客服助手

  • 自然语言分析工具

你只需要部署这个 API,再接入前端、小程序或者微信机器人,一个可用的 MVP 就有了。甚至可以部署多个模型服务,比如再加一个语音识别、OCR 模块,就能组成一整套模态处理系统。

代码运行示例

用 curl 测试接口示例如下:

curl -X POST https://你的部署地址/generate \
  -H "Content-Type: application/json" \
  -d '{"prompt": "给我写一段关于深度学习的介绍"}'

返回结果类似:

{
  "response": "深度学习是一种..."
}

性能分析:成本 & 效率

时间复杂度

  • 推理时间主要取决于模型大小和生成长度;

  • DeepSeek-7B 在 A10 GPU 上单轮响应大约为 1~3 秒,适合中小规模应用。

空间复杂度

  • 模型权重约 13GB,GPU 显存建议 ≥ 24GB;

  • 部署过程中 HAI 平台自动分配资源,不需要手动干预。

QA 环节

Q1:我可以换模型吗?

当然可以。只需要替换代码中的模型地址,比如换成 "deepseek-ai/deepseek-coder-6.7b-base",不需要其他额外配置。

Q2:怎么调高并发?

可以在控制台设置副本数,也可以开启负载均衡,HAI 会自动做并发处理。

Q3:我能接数据库、缓存服务吗?

可以接入腾讯云数据库(MySQL、Redis)等,只要在服务里加上相关 SDK 和连接配置即可。

总结

如果你想快速部署 DeepSeek 模型,尤其是在没有大规模算力和运维能力的情况下,腾讯云 HAI 平台是一条非常平滑的路径。它帮你挡掉了大部分的系统杂活,让你可以专注在模型逻辑和业务应用上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2331749.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JVM中常见的垃圾回收器(Garbage Collectors)

JVM中常见的垃圾回收器(Garbage Collectors)的分类和描述: 一、新生代收集器(Young Generation Collectors) 新生代收集器主要负责收集新创建的对象,这些对象通常存活时间较短。 Serial GC • 单线程收集…

极空间NAS进阶玩法:Debian 系统安装教程

文章目录 第 1 步:下载 Debian 镜像第 2 步:创建虚拟机创建虚拟机安装操作系统第 3 步:登录 Debian第 4 步:使用 Docker 搭建跳板机远程访问参考🚀 本文目标:在极空间 NAS 中安装 Debian 12。 第 1 步:下载 Debian 镜像 下载地址:https://www.debian.org/distrib/ 第…

煤矿数据机房防静电地板:智能化时代的“隐形守护者”

在煤矿行业,调度室不仅是安全生产的“大脑”,更是数据交互的“神经中枢”。随着智能化升级,如今的煤矿调度室早已不再是传统的电话挂图配置,而是集成了高清监控、精准定位系统、智能传感器等高精密电子设备的数字化空间。然而&…

操作符详解(下)——包含整形提升

1.讲解剩下的操作符 1.1:逗号表达式 逗号表达式,就是用逗号隔开的多个表达式。 逗号表达式,从左向右依次执⾏。整个表达式的结果是最后⼀个表达式的结果 例题1: //C的值是多少? int main() {int a 1;int b 2;int c (a &g…

Kairos 的野望:构建“智能体即服务”生态,让万物皆可 “Agent”

随着 AI Agent 成为 AI 领域的主要叙事,AI 赛道的发展也逐渐进入到 2.0 时代。聚焦于 AI Agent 概念本身,其是一种具备感知环境、进行决策和执行任务或服务的智能系统,它们通常能够理解自然语言指令,学习用户偏好,并在…

LeetCode 2968.执行操作使频率分数最大

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。 你可以对数组执行 至多 k 次操作: 从数组中选择一个下标 i ,将 nums[i] 增加 或者 减少 1 。 最终数组的频率分数定义为数组中众数的 频率 。 请你返回你可以得到的 最大 频率分数。 众数指的…

多模态智能体框架MM-StoryAgent:跨模态叙事视频生成的技术突破

一、研究背景与核心价值 由上海交通大学与阿里巴巴联合研发的MM-StoryAgent系统,基于多智能体协同框架实现了故事创作到视频生成的完整自动化流程。该系统通过整合文本、视觉、语音、音效等多模态生成技术,构建了包含角色一致性保持、跨模态适配优化等创新机制的叙事内容生产…

Codeforces Round 1013 (Div. 3)

Problem - A - Codeforces 解题思路&#xff1a; 对每个需要的数字进行计数 #include<bits/stdc.h> using namespace std;int main() {int t;cin >> t;while (t--){int n;cin >> n;int two 2;int zero 3;int five 1;int three 1;int one 1;int flag …

银河麒麟系统虚拟机网络ping不通的解决方法

问题描述&#xff1a;使用NAT模式搭建了银河麒麟系统虚拟主机&#xff0c;虚拟机内部可以联网&#xff0c;可以查询到具体的ip地址&#xff0c;同时也可以在虚拟机内部ping同宿主机ip&#xff0c;但使用宿主机却无法ping同银河麒麟虚拟机ip&#xff0c;使用ssh、ftp、sftp等工具…

大数据学习(105)-大数据组件分析

&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4dd;支持一…

基于SpinrgBoot+Vue的医院管理系统-026

一、项目技术栈 Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SpringBoot 前端&#xff1a;Vue开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 二、功能介绍 (1)…

LLM 为什么使用ID,每个单词不都是有编码的吗

LLM 为什么使用ID,每个单词不都是有编码的吗 在自然语言处理(NLP)里,把文本转换为整数 ID 来表示是一种常见的做法,以下为你详细阐述使用 ID 的原因,以及是否每个单词都有编码。 使用 ID 的原因 1. 计算机可处理性 计算机没办法直接处理文本数据,因为文本是人类使用的…

转行嵌入式,需要自学多久?

作为一个本硕都学机械&#xff0c;却阴差阳错进入嵌入式行业的老兵&#xff0c;这个问题我能聊一整天。十几年前我还在工厂车间穿着工装和机床打交道&#xff0c;偶然接触到单片机后就一发不可收拾。 转行这条路我走得异常艰辛&#xff0c;踩过的坑比写过的代码还多。去年我终…

【Leetcode-Hot100】移动零

题目 解答 首先&#xff0c;使用的解题思路是&#xff1a;使用两个指针&#xff0c;分别指向数组的第一个0元素位置&#xff0c;以该元素位置1为起始点寻找接下来第一个非0元素位置。二者确定后&#xff0c;对其进行交换。随后继续寻找下一个0元素位置。重复上述操作。 但第一…

leetcode_203. 移除链表元素_java

203. 移除链表元素https://leetcode.cn/problems/remove-linked-list-elements/ 1、题目 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 示例 1&#xff1a; 输入&#xff1a;head …

常见算法模板总结

文章目录 一、二叉树1. DFS2. BFS 二、回溯模板三、记忆化搜索四、动态规划1. 01背包朴素版本滚动数组优化 2. 完全背包朴素版本滚动数组优化 3. 最长递增子序列LIS朴素版本贪心二分优化 4. 最长公共子序列5. 最长回文子串 五、滑动窗口六、二分查找七、单调栈八、单调队列九、…

UE5学习笔记 FPS游戏制作44 统一UI大小 sizeBox

如果我们希望多个类似的UI大小一样&#xff0c;例如不同菜单的标题&#xff0c;可以使用sizeBox组件 我们在标题控件上&#xff0c;用sizeBox包裹所有子物体 然后指定他的最小宽高&#xff0c;或最大宽高 如果指定的是最小宽高&#xff0c;当子元素&#xff08;如图片&#xf…

C++学习之服务器EPOLL模型、处理客户端请求、向客户端回复数、向客户端发送文件

目录 1.启动epoll模型 2.和客户端建立新连接 3.接受客户端Http请求数据 4.代码回顾从接受的数据中读出请求行 5.请求行解析 6.正则表达式以及匹配 7.解析请求行以及后续处理 8.对path处理说明 9.如何回复响应数据 10.对文件对应content-type如何查询 11.服务器处理流…

BUUCTF-web刷题篇(17)

26.BabyUpload 源码&#xff1a;https://github.com/imaginiso/GXY_CTF/tree/master/Web/babyupload 查看题目源码&#xff1a; 写着&#xff1a;SetHandler application/x-httpd-php 通过源码可以看出这道文件上传题目主要还是考察.htaccess配置文件的特性&#xff0c;倘若…

国网B接口协议调阅实时视频接口流程详解以及检索失败原因(电网B接口)

文章目录 一、B接口协议调阅实时视频接口介绍B.6.1 接口描述B.6.2 接口流程B.6.3 接口参数B.6.3.1 SIP头字段B.6.3.2 SIP响应码B.6.3.3 SDP参数定义B.6.3.4 RTP动态Payload定义 B.6.4 消息示例B.6.4.1 调阅实时视频请求B.6.4.2 调阅实时视频请求响应 二、B接口调阅实时视频失败…