5G从专家到小白

news2025/4/7 15:17:45

文章目录

  • 第五代移动通信技术(5G)简介
    • 应用场景
  • 数据传输率
  • 带宽
  • 频段
    • 频段 VS 带宽
    • 中低频(6 GHz以下):覆盖范围广、穿透力强
    • 高频(24 GHz以上):满足在热点区域提升容量的需求
      • 毫米波
      • 热点区域方案
    • 干扰
  • LDPC码(低密度奇偶校验码)​
    • 核心原理
    • 场景
  • Polar码
    • 核心原理
    • 场景
  • 大规模天线技术Massive MIMO
    • 核心原理
    • 应用

第五代移动通信技术(5G)简介

特点:高速率、低时延、大连接。

同时支持中低频、高频频段。(4G仅支持中低频)。

采用LDPC(一种具有稀疏校验矩阵的分组纠错码)、Polar(一种基于信道极化理论的线性分组码)新型信道编码方案、性能更强的大规模天线技术(Massive MIMO)等。

应用场景

增强移动带宽(eMBB):移动互联网。
超高可靠低时延通信(uRLLC):工业控制、远程医疗、自动驾驶等。
海量机器类通信(mMTC):智慧城市、智能家居、环境监测等以传感和数据采集为目标的应用需求。

数据传输率

单位时间传输的数据量,通常用bps来衡量。

带宽

信号频率的范围,也就是最高和最低频率之差,单位是赫兹(Hz)。

根据香农定理,带宽越大,信道容量越高,传输速率越快
eg:带宽为车道数量(如4车道 vs 8车道)。车道越多(带宽越大),同时通行的车辆越多(吞吐量越高),拥堵概率越低(延迟更稳定)。

频段

电磁波的范围。
eg:28 GHz指中心频率为28 GHz(波长约10.7毫米)的电磁波范围。

频段 VS 带宽

28 GHz频段800 MHz带宽:该频段内可用的频谱宽度(频率范围)。800 MHz带宽意味着从28 GHz开始,有800 MHz的连续频谱可供使用,比如从28.0 GHz到28.8 GHz。

中低频(6 GHz以下):覆盖范围广、穿透力强

被广泛用于移动通信。4G、Wi-Fi、广播电视、卫星通信、军事雷达等。
低频段带宽有限,因为已经被其他服务占用,碎片化严重。每个频段在同一时间、同一地点只能被一种服务独占使用,否则会产生干扰。

低频段(Sub-1 GHz)​:
带宽窄(通常5~20 MHz)。
​特点:覆盖广但容量低,适合语音通话和物联网。
​示例:4G的700 MHz频段带宽仅10 MHz,单基站峰值速率约50 Mbps。

​中频段(Sub-6 GHz)​:
带宽中等(100~200 MHz)。
​特点:平衡覆盖与容量,5G主流频段。
eg:3.5 GHz频段带宽100 MHz,理论峰值速率2 Gbps。

高频(24 GHz以上):满足在热点区域提升容量的需求

覆盖范围小,但带宽大,适合高速数据传输。高频段有更多可用的连续频谱资源,资源更充裕。

由基站天线阵列和终端射频前端协同生成和发射。

毫米波

波长在1毫米到10毫米之间(频率越高,波长越短)。
带宽极大(400~800 MHz甚至更高)。
​特点:覆盖小但容量极高,适合热点区域。
挑战:覆盖范围小、穿透力差,需要依赖波束成形和小基站密集部署来弥补。
eg:28 GHz频段800 MHz带宽,理论峰值速率超10 Gbps。

热点区域方案

小基站密集覆盖:在热点区域每100-200米部署毫米波小基站,形成“蜂窝+微蜂窝”多层网络。

干扰

多个信号在同一时间、同一频段或相邻频段上相互叠加,导致接收端无法正确解析目标信号的现象。

eg:演唱会现场发不出消息:数万人同时使用手机,基站过载导致信号满格但无法上网。

同一场馆内,运营商会部署多频段基站,如:
中国移动:2.6 GHz(n41) + 4.9 GHz(n79) + 700 MHz(n28)。
中国联通/电信:3.5 GHz(n78) + 2.1 GHz(n1)。

LDPC码(低密度奇偶校验码)​

高吞吐量、低延迟,适合大数据块。
破解了高速数据传输的可靠性瓶颈,支撑eMBB的极致速率需求。

核心原理

​稀疏校验矩阵:校验矩阵中“1”的密度极低,使得译码复杂度低且并行度高。
​迭代译码算法:基于置信传播(BP算法),通过多次迭代逼近最优解,适合处理大数据块。

场景

5G ​eMBB(增强型移动宽带)​场景的数据信道(DL-SCH/UL-SCH)​,如用户数据传输。在5G NR中,LDPC码用于下行和上行共享信道,码长范围从40到8448比特,适配不同业务需求。

Polar码

在短码长时接近香农极限,适合控制信息。
在低功耗、高可靠场景中不可替代,是URLLC和mMTC的基石。

核心原理

​信道极化:通过递归信道合并与分裂,将N个独立信道转化为“完全可靠”和“完全不可靠”的两类信道,仅通过可靠信道传输信息位。
​串行抵消(SC)译码:复杂度低,但性能接近香农极限,尤其在短码长时优势显著。

场景

5G ​URLLC(超可靠低时延通信)​和mMTC(大规模机器通信)​的控制信道(如ACK/NACK、调度指令)。

控制信道(DCI/UCI)​:5G中下行控制信息(DCI)和上行控制信息(UCI)均采用Polar码,码长通常为12-512比特。

大规模天线技术Massive MIMO

为高频段提供可控的传播环境。
通过空间维度扩展,将频谱效率和覆盖能力推向新高度。

核心原理

​天线数量跃升:基站部署64-256个天线阵元(Sub-6 GHz)或1024个阵元(毫米波),形成高增益波束。
​波束成形与空分复用:
​波束成形(Beamforming)​:通过相位控制聚焦信号能量,提升覆盖和信噪比。
​多用户MIMO(MU-MIMO)​:同时服务数十个用户,频谱效率提升5-10倍。

应用

Sub-6 GHz广域覆盖和毫米波热点容量提升。
​优势:
​覆盖增强:波束成形使毫米波覆盖距离从50米扩展至500米。
​容量突破:64T64R天线配置下,小区容量可达10 Gbps/km²。
​干扰抑制:通过零陷(Null Steering)技术降低邻区干扰。
eg:
​毫米波基站:采用256阵元相控阵,波束宽度1°-5°,单用户峰值速率超10 Gbps。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2329280.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

神经网络入门:生动解读机器学习的“神经元”

神经网络作为机器学习中的核心算法之一,其灵感来源于生物神经系统。在本文中,我们将带领大家手把手学习神经网络的基本原理、结构和训练过程,并通过详细的 Python 代码实例让理论与实践紧密结合。无论你是编程新手还是机器学习爱好者&#xf…

web漏洞靶场学习分享

靶场:pikachu靶场 pikachu漏洞靶场漏洞类型: Burt Force(暴力破解漏洞)XSS(跨站脚本漏洞)CSRF(跨站请求伪造)SQL-Inject(SQL注入漏洞)RCE(远程命令/代码执行)Files Inclusion(文件包含漏洞)Unsafe file downloads(不安全的文件下载)Unsafe file uploads(不安全的文…

MCP over MQTT:EMQX 开启物联网 Agentic 时代

前言 随着 DeepSeek 等大语言模型(LLM)的广泛应用,如何找到合适的场景,并基于这些大模型构建服务于各行各业的智能体成为关键课题。在社区中,支持智能体开发的基础设施和工具层出不穷,其中,Ant…

ACM代码模式笔记

系列博客目录 文章目录 系列博客目录1.换行符 1.换行符 nextInt()、nextDouble() 等不会消耗换行符: 当使用 nextInt() 或 nextDouble() 读取数字时,它只读取数字部分,不会消耗掉输入后的换行符。 nextLine() 会读取并消耗换行符&#xff1a…

[王阳明代数讲义]具身智能才气等级分评价排位系统领域投射模型讲义

具身智能才气等级分评价排位系统领域投射模型讲义 具身智能胆识曲线调查琴语言的行为主义特性与模式匹配琴语言的"气质邻域 "与气度,云藏山鹰符号约定 琴语言的"气质邻域 "与气度,一尚韬竹符号约定 琴语言的"气质邻域 "与…

【Block总结】PlainUSR的局部注意力,即插即用|ACCV2024

论文信息 标题: PlainUSR: Chasing Faster ConvNet for Efficient Super-Resolution作者: Yan Wang, Yusen Li, Gang Wang, Xiaoguang Liu发表时间: 2024年会议/期刊: 亚洲计算机视觉会议(ACCV 2024)研究背景: 超分辨率(Super-Resolution, S…

【C++】从零实现Json-Rpc框架(2)

目录 JsonCpp库 1.1- Json数据格式 1.2 - JsonCpp介绍 • 序列化接口 • 反序列化接口 1.3 - Json序列化实践 JsonCpp使用 Muduo库 2.1 - Muduo库是什么 2.2 - Muduo库常见接口介绍 TcpServer类基础介绍 EventLoop类基础介绍 TcpConnection类基础介绍 TcpClient…

FastAPI依赖注入:链式调用与多级参数传递

title: FastAPI依赖注入:链式调用与多级参数传递 date: 2025/04/05 18:43:12 updated: 2025/04/05 18:43:12 author: cmdragon excerpt: FastAPI的依赖注入系统通过链式调用和多级参数传递实现组件间的解耦和复用。核心特性包括解耦性、可复用性、可测试性和声明式依赖解析…

【STM32单片机】#5 定时中断

主要参考学习资料: B站江协科技 STM32入门教程-2023版 细致讲解 中文字幕 开发资料下载链接:https://pan.baidu.com/s/1h_UjuQKDX9IpP-U1Effbsw?pwddspb 单片机套装:STM32F103C8T6开发板单片机C6T6核心板 实验板最小系统板套件科协 实验&…

OrbStack 作为 Mac 用户的 Docker 替代方案

推荐使用 OrbStack 作为 Mac 用户的 Docker 替代方案 在现代开发环境中,容器化技术已经成为了软件开发的重要组成部分。对于 Mac 用户来说,Docker Desktop 是一个广泛使用的工具,但它并不是唯一的选择。本文将推荐 OrbStack 作为 Docker Desktop 的替代方案,并探讨其优势。…

运行小程序报错

[ app.json 文件内容错误] app.json: ["tabBar"]["list"] 不能超过 5 项(env: Windows,mp,1.06.2206090; lib: 3.7.12) 他的意思大概是,微信小程序 app.json 文件中的 tabBar.list 配置项超过了 5 项。这是微信小程序的限制,tabBar…

深入剖析丝杆升降机工作原理,解锁工业传动奥秘

丝杆升降机,在工业设备的大舞台上扮演着不可或缺的角色,被广泛应用于机械制造、自动化生产线、建筑施工等众多领域。它能够精准实现重物的升降、定位等操作,为各类工业生产提供了稳定可靠的支持。想要深入了解丝杆升降机,就必须探…

【51单片机】2-3【I/O口】震动传感器控制LED灯

1.硬件 51最小系统LED灯模块震动传感器模块 2.软件 #include "reg52.h"sbit led1 P3^7;//根据原理图(电路图),设备变量led1指向P3组IO口的第7口 sbit vibrate P3^3;//震动传感器DO接P3.3口void Delay2000ms() //11.0592MHz {…

医疗思维图与数智云融合:从私有云到思维图的AI架构迭代(代码版)

医疗思维图作为AI架构演进的重要方向,其发展路径从传统云计算向融合时空智能、大模型及生态开放的“思维图”架构迭代,体现了技术与场景深度融合的趋势。 以下是其架构迭代的核心路径与关键特征分析: 一、从“智慧云”到“思维图”的架构演进逻辑 以下是针对医疗信息化领域…

【JS】接雨水题解

题目 思路 首先我们要明确如何计算每条柱子的接水量: 每条柱子对应接到的雨水量该柱子左边最大值和右边最大值中的较小值-该柱子本身的高度。举例:第二条柱子自身高度为0,左边最大值为1,右边最大值为3,取较小值1-自身…

线代[12]|《高等几何》陈绍菱(1984.9)(文末有对三大空间的分析及一个合格数学系毕业生的要求)

文章目录 一、概述二、平面仿射几何的基本概念三、平面射影几何的基本概念四、变换群和几何学五、二次曲线的射影理论、仿射理论和度量理论六、射影几何公理基础七、非欧几里得几何概要八、自我测试题九、欧氏解析几何、仿射解析几何、射影解析几何与其他(博主借助A…

第3课:状态管理与事件处理

第3课:状态管理与事件处理 学习目标 掌握useState Hook的使用理解组件事件处理机制实现表单输入与状态绑定完成任务添加功能原型 一、useState基础 1. 创建第一个状态 新建src/Counter.js: import { useState } from react;function Counter() {co…

【速写】Transformer-encoder-decoder深度解析

文章目录 一、理论分析1. Transformers概述2. Transformer的输入部分具体是如何构成?2.1 单词 Embedding2.2 位置 Embedding 3 自注意力原理3.1 自注意力结构3.2 QKV的计算3.3 自注意力的输出3.4 多头注意力 4 Encoder结构4.1 AddNorm4.2 前馈4.3 组成Encoder 二、代…

MyBatis八股文-执行流程、延迟加载、一级与二级缓存

(一)执行流程 mybatis-config.xml核心配置文件的作用: 在MyBatis框架的核心配置文件中需要去指定当前的环境配置、指定需要操作的是哪个数据库,并且输入当前的用户名与密码,只有配置了他才能真正操作数据库。同时还去加载了SQL映射文件&#…

基于Spark的哔哩哔哩舆情数据分析系统

【Spark】基于Spark的哔哩哔哩舆情数据分析系统 (完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 本项目基于Python和Django框架进行开发,为了便于广大用户针对舆情进行个性化分析处…