YOLOv11区域检测

news2025/4/25 11:23:10

TrackZone 使用Ultralytics YOLO11 -Ultralytics YOLO 文档

如何通过Ultralytics YOLO11 在Python 中使用 TrackZone?

只需几行代码,您就可以在特定区域设置对象跟踪,从而轻松将其集成到您的项目中。

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Define region points
region_points = [(150, 150), (1130, 150), (1130, 570), (150, 570)]

# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init trackzone (object tracking in zones, not complete frame)
trackzone = solutions.TrackZone(
    show=True,  # display the output
    region=region_points,  # pass region points
    model="yolo11n.pt",
)

# Process video
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    results = trackzone(im0)
    video_writer.write(results.plot_im)

cap.release()
video_writer.release()
cv2.destroyAllWindows()

效果图:只检测一定范围内的人

部分相关库代码

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

import cv2
import numpy as np

from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
from ultralytics.utils.plotting import colors


class TrackZone(BaseSolution):
    """
    A class to manage region-based object tracking in a video stream.

    This class extends the BaseSolution class and provides functionality for tracking objects within a specific region
    defined by a polygonal area. Objects outside the region are excluded from tracking.

    Attributes:
        region (np.ndarray): The polygonal region for tracking, represented as a convex hull of points.
        line_width (int): Width of the lines used for drawing bounding boxes and region boundaries.
        names (List[str]): List of class names that the model can detect.
        boxes (List[np.ndarray]): Bounding boxes of tracked objects.
        track_ids (List[int]): Unique identifiers for each tracked object.
        clss (List[int]): Class indices of tracked objects.

    Methods:
        process: Processes each frame of the video, applying region-based tracking.
        extract_tracks: Extracts tracking information from the input frame.
        display_output: Displays the processed output.

    Examples:
        >>> tracker = TrackZone()
        >>> frame = cv2.imread("frame.jpg")
        >>> results = tracker.process(frame)
        >>> cv2.imshow("Tracked Frame", results.plot_im)
    """

    def __init__(self, **kwargs):
        """
        Initialize the TrackZone class for tracking objects within a defined region in video streams.

        Args:
            **kwargs (Any): Additional keyword arguments passed to the parent class.
        """
        super().__init__(**kwargs)
        default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)]
        self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32))

    def process(self, im0):
        """
        Process the input frame to track objects within a defined region.

        This method initializes the annotator, creates a mask for the specified region, extracts tracks
        only from the masked area, and updates tracking information. Objects outside the region are ignored.

        Args:
            im0 (np.ndarray): The input image or frame to be processed.

        Returns:
            (SolutionResults): Contains processed image `plot_im` and `total_tracks` (int) representing the
                               total number of tracked objects within the defined region.

        Examples:
            >>> tracker = TrackZone()
            >>> frame = cv2.imread("path/to/image.jpg")
            >>> results = tracker.process(frame)
        """
        annotator = SolutionAnnotator(im0, line_width=self.line_width)  # Initialize annotator

        # Create a mask for the region and extract tracks from the masked image
        mask = np.zeros_like(im0[:, :, 0])
        mask = cv2.fillPoly(mask, [self.region], 255)
        masked_frame = cv2.bitwise_and(im0, im0, mask=mask)
        self.extract_tracks(masked_frame)

        # Draw the region boundary
        cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2)

        # Iterate over boxes, track ids, classes indexes list and draw bounding boxes
        for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
            annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True))

        plot_im = annotator.result()
        self.display_output(plot_im)  # display output with base class function

        # Return a SolutionResults
        return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2327175.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手工win提权土豆家族一键梭哈

手工提权 就是在没有工具使用的时候进行提权(或者是win版本过新导致的exp作者没更新等) 优点就是 随选随用 缺点就是非常繁琐(建议是先土豆梭哈然后再手工提权) 先进行信息收集(这边靶机以例子) 这个…

在Qt中直接在构建目录下直接运行.exe文件报错问题分析

在Qt中直接在构建目录下直接运行.exe文件报错问题分析 在学习Qt的过程中遇到过一个问题,直接在Qt构建目录下运行生成的.exe文件时会报错。这和MFC有一定的差别,如果MFC是可以直接运行的。 这是怎么回事呢? 在 Qt 中直接运行构建目录下的 .…

头戴式面捕头盔:高精度捕捉真人面部表情,赋能元宇宙多场景应用

随着元宇宙虚拟人与现实场景的不断交融,如何赋予虚拟人更加自然,灵动的表情成为了业内人员共同讨论的话题,尤其是在虚拟人直播,影视动画制作方面。在虚拟人直播间,丰富的面部表情可以赋予虚拟人更加生动的情感表达&…

LLM大模型教程——什么是AI大模型

引言 当GPT-4展现出惊人的上下文理解能力,当Stable Diffusion创造出媲美人类画师的图像作品,当AlphaFold2破解蛋白质折叠密码——这些里程碑事件标志着人工智能发展进入大模型主导的新纪元。本综述将深入解析这一技术革命的核心载体——AI大模型。 一、AI 大模型是什么​ 概…

机器学习(八):K-Means聚类原理与实战

声明:未经允许禁止转载与抄袭。 前言 k k k均值( k k k-means)聚类算法是一种经典的无监督聚类算法,本文将深入解析其理论原理,并在真是数据集上进行算法实践,话不多说,请看下文。 算法原理 …

【stm32--HAL库DMA+USART+空闲中断不定长收发数据】

串口通信-Hal库实现不定长度收发,DMAUSART DMA串口STM32CUBEMX配置(工程创建)基础配置时钟配置工程配置 代码编写现象 DMA 在正式配置之前,我们先来一起简单了解一下DMA。DMA(Direct Memory Access,直接内…

【SPP】蓝牙串口配置中LM互操作性要求深度解析

在蓝牙协议栈中,链路管理器(Link Manager, LM)承担着链路建立、安全管理、功耗控制等核心功能。对于串行端口配置文件(SPP)而言,LM 的互操作性直接影响连接稳定性、数据安全性和设备功耗。本文基于蓝牙核心…

Java迭代器【设计模式之迭代器模式】

目录 一.前言 二.正文 1.我写的类为什么不能使用增强for(迭代器遍历) 2.代码健全性——迭代器常见的两个Exception 1.NoSuchElementException 2.ConcurrentModificationException 三.后言 一.前言 本篇面向对象主要为和我一样的小白,主要是对迭代器模式的浅…

Eclipse IDE

创建新的Java项目和类 在 Eclipse IDE 中创建一个新的 Java 项目和 Java 类的步骤如下: 1. 创建新的 Java 项目 打开 Eclipse IDE。在菜单栏中,点击 File > New > Java Project。在弹出的对话框中,输入项目名称(例如&…

计算机视觉算法实战——基于YOLOv8的自动驾驶障碍物实时感知系统

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​​ ​​​​​​​​​ ​​ 引言:自动驾驶感知系统的关键挑战 自动驾驶技术正以前所未有的速度重塑交通出行方式&#xff…

【boost搜索引擎】下

boost搜索引擎 1. 编写搜索引擎模块 Searcher2. 编写 http_server 模块3. 编写前端模块4. 添加日志5. 补充 去掉暂停词6. 项目扩展方向 1. 编写搜索引擎模块 Searcher 这一模块主要提供建立索引,以及收到用户的发起的http请求通过Get方法提交的搜索关键字&#xff…

数据结构优化DP总结

单调栈:Codeforces Round 622 (Div. 2) C2. Skyscrapers (hard version) 简单来讲就是最后需要呈现出一个单峰数组,使得总高度最高。 最开始想到暴力枚举每一个元素都充当最高的“单峰”,但是这里的 n 过大,这样枚举肯定会TLE。 …

[Linux系统编程]进程间通信—system V

进程间通信—system V 1. System V 共享内存(Shared Memory)1.1 共享内存的建立过程1.2 共享内存函数2. System V 消息队列(Message Queues)3. System V 信号量(Semaphores)4. 总结前言: 之前所提的管道通信是基于文件的,OS没有做过多的设计工作。 system V 进程间通信…

第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组(部分题解)

文章目录 前言日期统计题意: 冶炼金属题意: 岛屿个数题意: 子串简写题意: 整数删除题意: 总结 前言 一年一度的🏀杯马上就要开始了,为了取得更好的成绩,好名字写了下前年2023年蓝桥…

分析sys高问题的方法总结

一、背景 sys高的问题往往属于底层同学更需要关注的问题,sys高的问题往往表现为几种情况,一种是瞬间的彪高,一种是持续的彪高。这篇博客里,我们总结一下常用的分析方法和分析工具的使用来排查这类sys高的问题。 二、通过mpstat配…

智谱发布AI Agent“AutoGLM沉思”,开启AI“边想边干”新时代

近日,智谱正式推出全新AI Agent产品——AutoGLM沉思,标志着人工智能从“思考”迈向“执行”的关键突破。该智能体不仅具备深度研究能力,还能自主完成实际操作,真正实现“边想边干”的智能化应用。 在演示环节,智谱展示…

使用Leaflet对的SpringBoot天地图路径规划可视化实践-以黄花机场到橘子洲景区为例

目录 前言 一、路径规划需求 1、需求背景 2、技术选型 3、功能简述 二、Leaflet前端可视化 1、内容布局 2、路线展示 3、转折路线展示 三、总结 前言 在当今数字化与智能化快速发展的时代,路径规划技术已经成为现代交通管理、旅游服务以及城市规划等领域的…

【小兔鲜】day02 Pinia、项目起步、Layout

【小兔鲜】day02 Pinia、项目起步、Layout 1. Pinia2. 添加Pinia到Vue项目3. 案例:Pinia-counter基础使用3.1 Store 是什么?3.2 应该在什么时候使用 Store? 4. Pinia-getters和异步action4.1 getters4.2 action如何实现异步 1. Pinia Pinia 是 Vue 的专…

PyTorch 激活函数

激活函数是神经网络中至关重要的组成部分,它们为网络引入了非线性特性,使得神经网络能够学习复杂模式。PyTorch 提供了多种常用的激活函数实现。 常用激活函数 1. ReLU (Rectified Linear Unit) 数学表达式: PyTorch实现: torch.nn.ReLU(inplaceFals…

魔塔社区使用llamafactory微调AI阅卷试题系统

启动 LLaMA-Factory 1. 安装 LLaMA-Factory 执行安装指令 git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]"解决依赖冲突 如果遇到依赖冲突,可使用以下命令安装,不…