TrackZone 使用Ultralytics YOLO11 -Ultralytics YOLO 文档
如何通过Ultralytics YOLO11 在Python 中使用 TrackZone?
只需几行代码,您就可以在特定区域设置对象跟踪,从而轻松将其集成到您的项目中。
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("path/to/video.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Define region points
region_points = [(150, 150), (1130, 150), (1130, 570), (150, 570)]
# Video writer
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
# Init trackzone (object tracking in zones, not complete frame)
trackzone = solutions.TrackZone(
show=True, # display the output
region=region_points, # pass region points
model="yolo11n.pt",
)
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = trackzone(im0)
video_writer.write(results.plot_im)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
效果图:只检测一定范围内的人
部分相关库代码
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import cv2
import numpy as np
from ultralytics.solutions.solutions import BaseSolution, SolutionAnnotator, SolutionResults
from ultralytics.utils.plotting import colors
class TrackZone(BaseSolution):
"""
A class to manage region-based object tracking in a video stream.
This class extends the BaseSolution class and provides functionality for tracking objects within a specific region
defined by a polygonal area. Objects outside the region are excluded from tracking.
Attributes:
region (np.ndarray): The polygonal region for tracking, represented as a convex hull of points.
line_width (int): Width of the lines used for drawing bounding boxes and region boundaries.
names (List[str]): List of class names that the model can detect.
boxes (List[np.ndarray]): Bounding boxes of tracked objects.
track_ids (List[int]): Unique identifiers for each tracked object.
clss (List[int]): Class indices of tracked objects.
Methods:
process: Processes each frame of the video, applying region-based tracking.
extract_tracks: Extracts tracking information from the input frame.
display_output: Displays the processed output.
Examples:
>>> tracker = TrackZone()
>>> frame = cv2.imread("frame.jpg")
>>> results = tracker.process(frame)
>>> cv2.imshow("Tracked Frame", results.plot_im)
"""
def __init__(self, **kwargs):
"""
Initialize the TrackZone class for tracking objects within a defined region in video streams.
Args:
**kwargs (Any): Additional keyword arguments passed to the parent class.
"""
super().__init__(**kwargs)
default_region = [(150, 150), (1130, 150), (1130, 570), (150, 570)]
self.region = cv2.convexHull(np.array(self.region or default_region, dtype=np.int32))
def process(self, im0):
"""
Process the input frame to track objects within a defined region.
This method initializes the annotator, creates a mask for the specified region, extracts tracks
only from the masked area, and updates tracking information. Objects outside the region are ignored.
Args:
im0 (np.ndarray): The input image or frame to be processed.
Returns:
(SolutionResults): Contains processed image `plot_im` and `total_tracks` (int) representing the
total number of tracked objects within the defined region.
Examples:
>>> tracker = TrackZone()
>>> frame = cv2.imread("path/to/image.jpg")
>>> results = tracker.process(frame)
"""
annotator = SolutionAnnotator(im0, line_width=self.line_width) # Initialize annotator
# Create a mask for the region and extract tracks from the masked image
mask = np.zeros_like(im0[:, :, 0])
mask = cv2.fillPoly(mask, [self.region], 255)
masked_frame = cv2.bitwise_and(im0, im0, mask=mask)
self.extract_tracks(masked_frame)
# Draw the region boundary
cv2.polylines(im0, [self.region], isClosed=True, color=(255, 255, 255), thickness=self.line_width * 2)
# Iterate over boxes, track ids, classes indexes list and draw bounding boxes
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
annotator.box_label(box, label=f"{self.names[cls]}:{track_id}", color=colors(track_id, True))
plot_im = annotator.result()
self.display_output(plot_im) # display output with base class function
# Return a SolutionResults
return SolutionResults(plot_im=plot_im, total_tracks=len(self.track_ids))