【stm32--HAL库DMA+USART+空闲中断不定长收发数据】

news2025/4/25 15:57:36

串口通信-Hal库实现不定长度收发,DMA+USART

  • DMA
  • 串口
  • STM32CUBEMX配置(工程创建)
    • 基础配置
    • 时钟配置
    • 工程配置
  • 代码编写
  • 现象

DMA

在正式配置之前,我们先来一起简单了解一下DMA。

    DMA(Direct Memory Access,直接内存访问)是一种用于处理器和外设之间传输数据的技术,通过DMA,外设可以直接访问内存中的数据,而不需要处理器的干预,从而提高数据传输的效率。

    举个例子:

    我是元始天尊,我把灵珠给太乙真人,然后通过太乙真人把灵珠给殷夫人,这是常规情况的数据传输,太乙真人就是CPU,灵珠就是数据,这样做会占用太乙真人的精力(消耗CPU的资源)。

    然而实际上,太乙真人在这中间仅仅只是充当了一个大自然的搬运工,这样太大材小用了,像太乙真人这样的十二金仙,有捍卫人间正道,斩妖除魔的大事儿要处理,哪儿能天天当快递员呀。

    于是,伟大的元始天尊(也就是我),想了一个办法,我直接用法术,把灵珠传送到殷夫人肚子里面,这就是DMA了。灵珠就是数据,法术就相当于是DMA通道,这样不但太乙真人可以去干大事儿了,灵珠也能更快到达殷夫人肚子里面了,两全其美,皆大欢喜。

在这里插入图片描述
这张图就是我上面描述的过程,有细心的小伙伴可能发现了,我这里用的是双向箭头,因为这里的数据传输,也是双向的,殷夫人收到灵珠了,但是她不会用呀,那她也可以通过DMA通道,找我要使用说明书;太乙真人那边同理啊,太乙真人就相当于一个客服,他可以把殷夫人的问题转述给我。所以这里数据传输是双向的,因为他只是一个通道,这个通道双方都可以使用。
在这里插入图片描述
在这里插入图片描述

串口

串口可参考我之前写的,这里不过多阐述

STM32CUBEMX配置(工程创建)

基础配置

首先打开STM32CUBEMX,选择我们的芯片(我这里用的是STM32F103C8T6)
在这里插入图片描述
在这里插入图片描述
配置GPIO:
在这里插入图片描述
注意,原理图用到谁,配置谁,不用的不配置,因为会浪费资源。
比如,**我现在要配置PA10、PA9,你想想你是要什么功能?是串口通讯还是普通的IO口?**可以选择:
在这里插入图片描述
这里因为是串口通讯,因此选用USART1_RX,同理,PA9未TX。
在这里插入图片描述
这里只讲串口,其他的和上述一样。

来到此处USART处:
在这里插入图片描述

配置参数:
在这里插入图片描述
在这里插入图片描述
来到NVIC,勾选中断
在这里插入图片描述
添加DMA:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

时钟配置

在这里插入图片描述
开启此处外部晶振始终才能设置下方图片的外部晶振的参数
可以参考大佬文章:时钟超详细讲解
在这里插入图片描述

工程配置

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
创建用户的.c,.h文件
在这里插入图片描述

代码编写

UserUsart1.c

#include "usart.h"

#include "UserUsart1.h"

#include "string.h"





// 发送缓冲区操作
uint8_t  usart1_SendBuf[USART1_BUF_SIZE+1];
uint8_t  c[USART1_BUF_SIZE+1];                                         // 发送缓存区
uint16_t usart1_SendLen= 0;                                                    // 发送数据长度
// 接收缓冲区操作
uint8_t  usart1_RecvBuf[USART1_BUF_SIZE+1];        // 接收数据环形缓冲区 
uint16_t usart1_RecvLen=0;                // 环形缓冲区的当前放入位置 
uint8_t  usart1_recvFrame = 0;                        // 1 接收一个完整数据包. 0:NO


void Usart1_init(void)
{
  usart1_RecvLen=0;                                                                          // 清除标志
  usart1_recvFrame=0;
  memset(usart1_RecvBuf,0,USART1_BUF_SIZE);     
  
  usart1_RecvLen = 0;
  memset(usart1_SendBuf,0,USART1_BUF_SIZE);  
}




// 通过DMA方式,直接发送数据,注意发送数据不能够超过缓冲区长度
// 注意数据不要溢出
uint8_t Usart1_SendData(uint8_t *buf, uint16_t Size)   
{
  if(__HAL_DMA_GET_COUNTER(huart1.hdmatx) == 0 )                                // 检查上次数据是否发送完成   
  {
    if(Size>USART1_BUF_SIZE)
      Size = USART1_BUF_SIZE;
    for(int i=0; i<Size; i++)
      usart1_SendBuf[i] = buf[i];                                                // 发送缓存区
    usart1_SendLen= Size;                                                        // 发送数据长度
    HAL_UART_DMAStop(&huart1);                                                  // 关闭DMA
    HAL_UART_Transmit_DMA(&huart1,usart1_SendBuf,usart1_SendLen);                 // 启动DMA发送 
    return 1;
  }
  else
    return 0;
}

// 发送完成中断,打开接收
void USART1_EndTxd_IRQHandler(void)
{
  usart1_SendLen = 0;    // 发送完成
}


// 启动新的串口读取
void Usart1_ReadData(void)
{
  HAL_UART_AbortReceive_IT(&huart1);                                            // 初始化接收缓冲区
  usart1_RecvLen=0;                                                                          // 清除标志
  usart1_recvFrame=0;
  memset(usart1_RecvBuf,0,USART1_BUF_SIZE);                                       // BUFFER清除, 可以不用
  HAL_UART_Receive_IT(&huart1,usart1_RecvBuf,1);                                 // 打开中断,接收第一个数据
}


// 数据包第一个字节,串口中断接收
void USART1_RXD_IRQHandler(void)
{
  HAL_UART_Receive_DMA(&huart1, usart1_RecvBuf+1, USART1_BUF_SIZE-1);             //打开DMA接收,数据放在g_USART1_DMA_RX_Buffer
  __HAL_UART_CLEAR_IDLEFLAG(&huart1);                                           //清除标志位
  __HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);                                  //使能IDLE中断
}

// 串口DMA空闲中断接收
void USART1_IDLE_IRQHandler(void)
{
  uint32_t temp;
  if (__HAL_UART_GET_FLAG(&huart1, UART_FLAG_IDLE) != RESET)                    //获取IDLE标志位,检查idle标志是否被置位
  {
    __HAL_UART_CLEAR_IDLEFLAG(&huart1);                                         //清除标志位
    HAL_UART_DMAStop(&huart1); 
    temp = USART1_BUF_SIZE - __HAL_DMA_GET_COUNTER(huart1.hdmarx);
    if(usart1_recvFrame==0 && temp>0 && temp<USART1_BUF_SIZE) 
    {
      usart1_RecvLen =  temp+1;                                             //总计数减去未传输的数据个数,得到已经接收的数据个数
      usart1_recvFrame = 1;	                                                // 接受完成标志位置1
    }
  }
}

//执行命令函数
void user_uart_process(void)
{
  if(usart1_recvFrame==1)  // UART7 接收到数据,进行数据解析,解析完成后,将数据通过Can1发送出去
  {
    if(usart1_RecvLen>0)
    {
    //此处可处理Usart1_RexBuff的数据,比如提取,数据处理等操作
			//	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_12,0);
			 // HAL_Delay(500);
			  //HAL_GPIO_WritePin(GPIOB,GPIO_PIN_12,1);
    }
    usart1_recvFrame =0;
    Usart1_ReadData();//再次开启中断,方便下次接收
  }
}



/*******************************************************************************
此回调函数中,每次接收到的字节 xxx_Rxd_Buf[2]
因为在调用 HAL_UART_IRQHandler(&huart5);时,调用了 UART_Receive_IT(),其中
执行了 __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE),所以接收中断必须在回调函
数中重新开启,最简单的就是重复调用 HAL_UART_Receive_IT(&huart,dbg_Rxd_Buf,1)了
*******************************************************************************/
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{
  if(UartHandle->Instance == USART1)
    USART1_RXD_IRQHandler();   

}

// UART发送完成中断调用。 UART_DMATransmitCplt  和 UART_EndTransmit_IT 调用
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *UartHandle)
{
  if(UartHandle->Instance == USART1)
    USART1_EndTxd_IRQHandler();      
}


// 注意:注意:注意:UART空闲中断,用户自定义的,要写进it.h里
void HAL_UART_IdleCallback(UART_HandleTypeDef *UartHandle)
{
  if(UartHandle->Instance == USART1)
    USART1_IDLE_IRQHandler();       
}






UserUsart1.h

#ifndef __USER_USART1_H__
#define __USER_USART1_H__
#define  USART1_BUF_SIZE    256                            // DMA缓冲区长度
extern void HAL_UART_IdleCallback(UART_HandleTypeDef *UartHandle);
// 发送缓冲区操作
extern uint8_t  usart1_SendBuf[USART1_BUF_SIZE+1];                                         // 发送缓存区
extern uint16_t usart1_SendLen;                                                    // 发送数据长度
// 接收缓冲区操作
extern uint8_t  usart1_RecvBuf[USART1_BUF_SIZE+1];        // 接收数据环形缓冲区 
extern uint16_t usart1_RecvLen;                // 环形缓冲区的当前放入位置 
extern uint8_t  usart1_recvFrame;                        // 1 接收一个完整数据包. 0:NO

extern void Usart1_init(void);

// 通过DMA方式,直接发送数据,注意发送数据不能够超过缓冲区长度
extern uint8_t Usart1_SendData(uint8_t *buf, uint16_t Size);   
// 发送完成中断,打开接收
extern void USART1_EndTxd_IRQHandler(void);

// 启动新的串口读取
extern void Usart1_ReadData(void);
// 从串口收到数据,存入缓存
extern void USART1_RXD_IRQHandler(void);
extern void USART1_IDLE_IRQHandler(void);
//命令执行
extern void user_uart_process();
#endif 

在这里插入图片描述stm32f1xx_it.h 的空闲中断一定要加进来,可在UserUsart1.c的代码找到该空闲中断函数

在这里插入图片描述

main.c

其中main.c里面一定要注意,要先开启一次接收中断,否则收不到数据。 对于我的main函数而言,Usart1_ReadData();函数就是开启一次中断的。

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "UserUsart1.h"
#include <stdint.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
 uint8_t a[]={0x01,0x02,0x03};
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART1_UART_Init();
  MX_I2C1_Init();
  /* USER CODE BEGIN 2 */
  Usart1_init();
	 /* 启动接收中断很重要,先开启一次中断,一定一定一定,不然收不到数据 */
  Usart1_ReadData();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
		//Usart1_SendData(a,3);
		user_uart_process();
		
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
//  while (1)
//  {
//  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

现象

单片机收:
在这里插入图片描述
单片机发:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2327166.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SPP】蓝牙串口配置中LM互操作性要求深度解析

在蓝牙协议栈中&#xff0c;链路管理器&#xff08;Link Manager, LM&#xff09;承担着链路建立、安全管理、功耗控制等核心功能。对于串行端口配置文件&#xff08;SPP&#xff09;而言&#xff0c;LM 的互操作性直接影响连接稳定性、数据安全性和设备功耗。本文基于蓝牙核心…

Java迭代器【设计模式之迭代器模式】

目录 一.前言 二.正文 1.我写的类为什么不能使用增强for(迭代器遍历) 2.代码健全性——迭代器常见的两个Exception 1.NoSuchElementException 2.ConcurrentModificationException 三.后言 一.前言 本篇面向对象主要为和我一样的小白&#xff0c;主要是对迭代器模式的浅…

Eclipse IDE

创建新的Java项目和类 在 Eclipse IDE 中创建一个新的 Java 项目和 Java 类的步骤如下&#xff1a; 1. 创建新的 Java 项目 打开 Eclipse IDE。在菜单栏中&#xff0c;点击 File > New > Java Project。在弹出的对话框中&#xff0c;输入项目名称&#xff08;例如&…

计算机视觉算法实战——基于YOLOv8的自动驾驶障碍物实时感知系统

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​​ ​​​​​​​​​ ​​ 引言&#xff1a;自动驾驶感知系统的关键挑战 自动驾驶技术正以前所未有的速度重塑交通出行方式&#xff…

【boost搜索引擎】下

boost搜索引擎 1. 编写搜索引擎模块 Searcher2. 编写 http_server 模块3. 编写前端模块4. 添加日志5. 补充 去掉暂停词6. 项目扩展方向 1. 编写搜索引擎模块 Searcher 这一模块主要提供建立索引&#xff0c;以及收到用户的发起的http请求通过Get方法提交的搜索关键字&#xff…

数据结构优化DP总结

单调栈&#xff1a;Codeforces Round 622 (Div. 2) C2. Skyscrapers (hard version) 简单来讲就是最后需要呈现出一个单峰数组&#xff0c;使得总高度最高。 最开始想到暴力枚举每一个元素都充当最高的“单峰”&#xff0c;但是这里的 n 过大&#xff0c;这样枚举肯定会TLE。 …

[Linux系统编程]进程间通信—system V

进程间通信—system V 1. System V 共享内存(Shared Memory)1.1 共享内存的建立过程1.2 共享内存函数2. System V 消息队列(Message Queues)3. System V 信号量(Semaphores)4. 总结前言: 之前所提的管道通信是基于文件的,OS没有做过多的设计工作。 system V 进程间通信…

第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组(部分题解)

文章目录 前言日期统计题意&#xff1a; 冶炼金属题意&#xff1a; 岛屿个数题意&#xff1a; 子串简写题意&#xff1a; 整数删除题意&#xff1a; 总结 前言 一年一度的&#x1f3c0;杯马上就要开始了&#xff0c;为了取得更好的成绩&#xff0c;好名字写了下前年2023年蓝桥…

分析sys高问题的方法总结

一、背景 sys高的问题往往属于底层同学更需要关注的问题&#xff0c;sys高的问题往往表现为几种情况&#xff0c;一种是瞬间的彪高&#xff0c;一种是持续的彪高。这篇博客里&#xff0c;我们总结一下常用的分析方法和分析工具的使用来排查这类sys高的问题。 二、通过mpstat配…

智谱发布AI Agent“AutoGLM沉思”,开启AI“边想边干”新时代

近日&#xff0c;智谱正式推出全新AI Agent产品——AutoGLM沉思&#xff0c;标志着人工智能从“思考”迈向“执行”的关键突破。该智能体不仅具备深度研究能力&#xff0c;还能自主完成实际操作&#xff0c;真正实现“边想边干”的智能化应用。 在演示环节&#xff0c;智谱展示…

使用Leaflet对的SpringBoot天地图路径规划可视化实践-以黄花机场到橘子洲景区为例

目录 前言 一、路径规划需求 1、需求背景 2、技术选型 3、功能简述 二、Leaflet前端可视化 1、内容布局 2、路线展示 3、转折路线展示 三、总结 前言 在当今数字化与智能化快速发展的时代&#xff0c;路径规划技术已经成为现代交通管理、旅游服务以及城市规划等领域的…

【小兔鲜】day02 Pinia、项目起步、Layout

【小兔鲜】day02 Pinia、项目起步、Layout 1. Pinia2. 添加Pinia到Vue项目3. 案例&#xff1a;Pinia-counter基础使用3.1 Store 是什么&#xff1f;3.2 应该在什么时候使用 Store? 4. Pinia-getters和异步action4.1 getters4.2 action如何实现异步 1. Pinia Pinia 是 Vue 的专…

PyTorch 激活函数

激活函数是神经网络中至关重要的组成部分&#xff0c;它们为网络引入了非线性特性&#xff0c;使得神经网络能够学习复杂模式。PyTorch 提供了多种常用的激活函数实现。 常用激活函数 1. ReLU (Rectified Linear Unit) 数学表达式: PyTorch实现: torch.nn.ReLU(inplaceFals…

魔塔社区使用llamafactory微调AI阅卷试题系统

启动 LLaMA-Factory 1. 安装 LLaMA-Factory 执行安装指令 git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]"解决依赖冲突 如果遇到依赖冲突&#xff0c;可使用以下命令安装&#xff0c;不…

如何在 Unity3D 导入 Spine 动画

一、前言 《如何在 Unity3D 项目中导入 Spine 动画》&#xff0c;虽然在网上有很多这种文章&#xff0c;直接将问题交给 DeepSeek 也能得到具体的操作流程&#xff0c;但是照着他们提供的方法还是能遇到几个问题&#xff0c;比如&#xff1a; AI 回答没有提到 Unity 无法识别.…

论文笔记:ASTTN模型

研究现状 现有研究大多通过分别考虑空间相关性和时间相关性或在滑动时间窗口内对这种时空相关性进行建模&#xff0c;而未能对直接的时空相关性进行建模。受最近图领域Transformer成功的启发&#xff0c;该模型提出利用局部多头自关注&#xff0c;在自适应时空图上直接建立跨时…

2025-4-2 蓝桥杯刷题情况(分布式队列)

1.题目描述 小蓝最近学习了一种神奇的队列:分布式队列。简单来说&#xff0c;分布式队列包含 N 个节点(编号为0至N-1&#xff0c;其中0号为主节点)&#xff0c;其中只有一个主节点&#xff0c;其余为副节点。 主/副节点中都各自维护着一个队列&#xff0c;当往分布式队列中添加…

【Java中级】10章、内部类、局部内部类、匿名内部类、成员内部类、静态内部类的基本语法和细节讲解配套例题巩固理解【5】

❤️ 【内部类】干货满满&#xff0c;本章内容有点难理解&#xff0c;需要明白类的实例化&#xff0c;学完本篇文章你会对内部类有个清晰的认知 &#x1f495; 内容涉及内部类的介绍、局部内部类、匿名内部类(重点)、成员内部类、静态内部类 &#x1f308; 跟着B站一位老师学习…

swift-7-汇编分析闭包本质

一、汇编分析 fn1里面存放的东西 func testClosure2() {class Person {var age: Int 10}typealias Fn (Int) -> Intvar num 0func plus(_ i: Int) -> Int {num ireturn num}return plus} // 返回的plus和num形成了闭包var fn1 getFn()print(fn1(1)) // 1print(fn1(…

Linux: 进程信号初识

目录 一 前言 二 信号的感性认识 三 信号处理常见方式 四 系统信号列表 五 信号的保存 六 信号的产生 1. 通过终端按键产生信号 2. 通过系统调用向进程发送信号 3. 硬件异常产生信号 4. 软件条件产生信号 一 前言 在Linux操作系统中&#xff0c;进程信号是一个非常重…