阿里推出全新推理模型(因果语言模型),仅1/20参数媲美DeepSeek R1

news2025/3/9 10:31:40

阿里Qwen 团队正式发布了他们最新的研究成果——QwQ-32B大语言模型!这款模型不仅名字萌萌哒(QwQ),实力更是不容小觑!😎
QwQ-32B 已在 Hugging Face 和 ModelScope 开源,采用了 Apache 2.0 开源协议。大家可通过 Qwen Chat 直接进行体验!在这里插入图片描述

Qwen 团队却用320亿参数的 QwQ-32B,硬刚拥有6710亿参数的 DeepSeek-R1,并且在多项评测中取得了媲美甚至超越后者的惊人成绩!背后究竟是什么黑科技?答案就是——强化学习(Reinforcement Learning,RL)!

划重点:强化学习,大模型的新引擎!💪

Qwen 团队在博文中提到,他们深入探索了强化学习(RL)在提升大语言模型智能方面的巨大潜力。QwQ-32B 的成功发布,有力地证明了RL 是提升模型性能的强大引擎!

多项基准评测硬刚 DeepSeek-R1
官方给出基准评测结果,涵盖了数学推理、代码能力和通用问题解决等多个方面:
在这里插入图片描述
从数据中我们可以清晰地看到,在AIME24和IFEval等关键基准测试中,QwQ-32B 的表现甚至略微超过了参数量巨大的 DeepSeek-R1!而在其他基准测试中,也基本与 DeepSeek-R1 持平,远超其他对比模型。

这意味着 QwQ-32B 在仅有 DeepSeek-R1 约 1/20 参数量的情况下,用强化学习,实现了性能上的惊人跨越!

实例对比:我身高1.73米,拿着一根5.5米长的竹竿,能否通过高4米、宽3米的门?

这个问题目前只有腾讯元宝/问小白里的deepseek回答可以通过
在这里插入图片描述
在这里插入图片描述

技术揭秘:

冷启动+结果导向的强化学习策略

Qwen 团队在博文中也简单介绍了 QwQ-32B 背后的强化学习方法。他们采用了冷启动(cold-start checkpoint)的方式,并实施了结果导向(outcome-based rewards)的强化学习策略。

• 冷启动:从一个预训练模型的检查点开始训练。

• 结果导向:在初始阶段,主要针对数学和代码任务进行 RL 训练。

• 数学问题:使用准确率验证器(accuracy verifier)来确保答案的正确性。

• 代码生成:使用代码执行服务器(code execution server)来评估生成的代码是否能够成功运行。

• 通用奖励模型和规则验证器:后续阶段,会逐步引入更通用的奖励模型和规则验证器,提升模型在其他通用能力方面的表现。

这种策略的核心在于不依赖传统的奖励模型,而是直接根据任务结果(答案是否正确,代码是否运行成功)来指导模型的学习,更加高效和直接。

冷启动的基础上开展了大规模强化学习。在初始阶段,特别针对数学和编程任务进行了 RL 训练。与依赖传统的奖励模型(rewardmodel)不同,通过校验生成答案的正确性来为数学问题提供反馈,并通过代码执行服务器评估生成的代码是否成功通过测试用例来提供代码的反馈。随着训练轮次的推进,这两个领域中的性能均表现出持续的提升。在第一阶段的RL 过后,增加了另一个针对通用能力的 RL。此阶段使用通用奖励模型和一些基于规则的验证器进行训练。发现,通过少量步骤的通用RL,可以提升其他通用能力,同时在数学和编程任务上的性能没有显著下降。

特点:

类型:因果语言模型

训练阶段:预训练与后训练(监督微调和强化学习)

架构:带 RoPE、SwiGLU、RMSNorm 和注意力 QKV 偏置的 Transformer

参数数量:325 亿

非嵌入参数数量:310 亿

层数:64

注意力头数量(GQA):Q 为 40,KV 为 8

上下文长度:完整支持 131,072 个标记

环境要求

Qwen2.5 的代码已集成到最新版的 Hugging Facetransformers中,建议使用最新版本的transformers

如果你使用的是transformers<4.37.0,可能会遇到以下错误:

KeyError: 'qwen2'

快速入门

API调用

from openai import OpenAI
import os

# Initialize OpenAI client
client = OpenAI(
    # If the environment variable is not configured, replace with your API Key: api_key="sk-xxx"
    # How to get an API Key:https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"
)

reasoning_content = ""
content = ""

is_answering = False

completion = client.chat.completions.create(
    model="qwq-32b",
    messages=[
        {"role": "user", "content": "Which is larger, 9.9 or 9.11?"}
    ],
    stream=True,
    # Uncomment the following line to return token usage in the last chunk
    # stream_options={
    #     "include_usage": True
    # }
)

print("\n" + "=" * 20 + "reasoning content" + "=" * 20 + "\n")

for chunk in completion:
    # If chunk.choices is empty, print usage
    if not chunk.choices:
        print("\nUsage:")
        print(chunk.usage)
    else:
        delta = chunk.choices[0].delta
        # Print reasoning content
        if hasattr(delta, 'reasoning_content') and delta.reasoning_content is not None:
            print(delta.reasoning_content, end='', flush=True)
            reasoning_content += delta.reasoning_content
        else:
            if delta.content != "" and is_answering is False:
                print("\n" + "=" * 20 + "content" + "=" * 20 + "\n")
                is_answering = True
            # Print content
            print(delta.content, end='', flush=True)
            content += delta.content

transformers 本地加载

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/QwQ-32B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "单词 'strawberry' 中有几个字母 'r'?"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

使用指南

为了达到最佳性能,建议以下设置:

• 确保深思熟虑的输出:确保模型以"<think>"开头,以避免生成空洞的思考内容,这可能会降低输出质量。如果你使用apply_chat_template并设置add_generation_prompt=True,这已经自动实现,但可能会导致响应缺少开头的<think>标签。这是正常现象。

采样参数

• 使用温度参数 Temperature=0.6TopP=0.95,而不是贪婪解码,以避免无尽重复并增强多样性。

• 对于复杂的推理任务(如数学或编程),设置 TopK=40

对于其他类型的问题,使用 TopK=20。

标准化输出格式:在基准测试时,建议使用提示词来标准化模型输出。

数学问题:在提示词中加入"请逐步推理,并将最终答案放在\boxed{}中。"

选择题:在提示词中加入以下 JSON 结构以标准化回答:“请在answer字段中显示你的选择,仅使用选项字母,例如,\"answer\": \"C\"。”

处理长输入:对于超过 32,768 个标记的输入,启用YaRN以提升模型对长序列信息的捕捉能力。

如果你需要支持的框架,可以在config.json中添加以下内容以启用 YaRN

{
  ...,
  "rope_scaling": {
    "factor": 4.0,
    "original_max_position_embeddings": 32768,
    "type": "yarn"
  }
}

目前,vLLM 仅支持静态 YaRN,这意味着缩放因子无论输入长度如何都保持不变,可能会对较短文本的性能产生影响。建议仅在需要处理长上下文时添加rope_scaling配置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2311031.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue实现一个pdf在线预览,pdf选择文本并提取复制文字触发弹窗效果

[TOC] 一、文件预览 1、安装依赖包 这里安装了disjs-dist2.16版本&#xff0c;安装过程中报错缺少worker-loader npm i pdfjs-dist2.16.105 worker-loader3.0.8 2、模板部分 <template><div id"pdf-view"><canvas v-for"page in pdfPages&qu…

时间复杂度分析与递归,以新南UNSW的COMP2521作业题为例

作者&#xff1a;Smooth&#xff08;连接教育高级讲师&#xff09; 首发于&#xff1a;⁠⁠⁠⁠⁠⁠⁠UNSW学习知识库&#xff08;UNSW Study Wiki&#xff09; 创作时间&#xff1a;2025年3月5日 如何测度算法的时间性能&#xff1f;理论分析Theoretical Analysis 测度算法时…

基于CSDN资源,搭建AI赋能农业典型场景落地方案

农业场景&#xff0c;不但是信息化、自动化等薄弱的产业&#xff0c;更是AI落地困难的场景。基于此&#xff0c;想通过这篇文章查找一个CSDN相关资源&#xff0c;论证一下AI赋能农业三个典型场景的实现思路。 场景1&#xff1a;水质-土壤智能调控 **痛点&#xff1a;**水质恶…

python量化交易——金融数据管理最佳实践——使用qteasy大批量自动拉取金融数据

文章目录 使用数据获取渠道自动填充数据QTEASY数据拉取功能数据拉取接口refill_data_source()数据拉取API的功能特性多渠道拉取数据实现下载流量控制实现错误重试日志记录其他功能 qteasy是一个功能全面且易用的量化交易策略框架&#xff0c; Github地址在这里。使用它&#x…

RoboBrain:从抽象到具体的机器人操作统一大脑模型

25年2月来自北大、北京智源、中科院自动化所等的论文“RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete”。 目前的多模态大语言模型&#xff08;MLLM&#xff09; 缺少三项必备的机器人大脑能力&#xff1a;规划能力&#xff0c;将复杂…

DeepSeek本地接口调用(Ollama)

前言 上篇博文&#xff0c;我们通过Ollama搭建了本地的DeepSeek模型&#xff0c;本文主要是方便开发人员&#xff0c;如何通过代码或工具&#xff0c;通过API接口调用本地deepSeek模型 前文&#xff1a;DeepSeek-R1本地搭建_deepseek 本地部署-CSDN博客 注&#xff1a;本文不仅…

SQL_语法

1 数据库 1.1 新增 create database [if not exists] 数据库名; 1.2 删除 drop database [if exists] 数据库名; 1.3 查询 (1) 查看所有数据库 show databases; (2) 查看当前数据库下的所有表 show tables; 2 数据表 2.1 新增 (1) 创建表 create table [if not exists…

全面回顾复习——C++语法篇1(基于牛客网C++题库)

注&#xff1a;牛客网允许使用万能头文件#include<bits/stdc.h> 1、求类型长度——sizeof&#xff08;&#xff09;函数 2、将浮点数四舍五入——round&#xff08;&#xff09;函数——前面如果加上static_cast会更安全一些 在C语言中可以使用printf&#xff08;“.0l…

一、数据库 MySQL 基础学习 (上)

一、数据库的概念 DB 数据库&#xff08;database&#xff09;&#xff1a;存储数据的“仓库”&#xff0c;保存一系列有组织的数据 DBMS&#xff1a;数据库管理系统(Database Management System)。数据库是通过 DBMS 创建和操作的容器 创建的 DBMS&#xff1a; MySQL、Oracl…

基于Django创建一个WEB后端框架(DjangoRestFramework+MySQL)流程

一、Django项目初始化 1.创建Django项目 Django-admin startproject 项目名 2.安装 djangorestframework pip install djangorestframework 解释: Django REST Framework (DRF) 是基于 Django 框架的一个强大的 Web API 框架&#xff0c;提供了多种工具和库来构建 RESTf…

AutoGen学习笔记系列(七)Tutorial - Managing State

这篇文章瞄准的是AutoGen框架官方教程中的 Tutorial 章节中的 Managing State 小节&#xff0c;主要介绍了如何对Team内的状态管理&#xff0c;特别是如何 保存 与 加载 状态&#xff0c;这对于Agent系统而言非常重要。 官网链接&#xff1a;https://microsoft.github.io/auto…

Redis渐进式遍历数据库

目录 渐进式遍历 数据库 渐进式遍历 keys*可以一次性的把整个redis中所有key都获取到&#xff0c;这个操作是非常危险的&#xff0c;因为可能一下获取到太多的key&#xff0c;阻塞redis服务器。要想很好的获取到所有的key&#xff0c;又不想出现卡死的情况&#xff0c;就可以…

基于单片机的速度里程表设计(论文+源码)

1 系统方案 本次智能速度里程表的总体架构如图2-1所示&#xff0c;在硬件上包括了STC89C52单片机&#xff0c;电机&#xff0c;显示模块&#xff0c;报警模块&#xff0c;DS1302时钟模块&#xff0c;超速检测模块&#xff0c;按键等等。在软件设计功能的功能上&#xff0c;按下…

计算机毕业设计Python+Django+Vue3微博数据舆情分析平台 微博用户画像系统 微博舆情可视化(源码+ 文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

Dify+DeepSeek | Excel数据一键可视化(创建步骤案例)(echarts助手.yml)(文档表格转图表、根据表格绘制图表、Excel绘制图表)

Dify部署参考&#xff1a;Dify Rag部署并集成在线Deepseek教程&#xff08;Windows、部署Rag、安装Ragan安装、安装Dify安装、安装ollama安装&#xff09; DifyDeepSeek - Excel数据一键可视化&#xff08;创建步骤案例&#xff09;-DSL工程文件&#xff08;可直接导入&#x…

安装与配置 STK-MATLAB 接口

STK版本为11.6 Matlab版本为R2018a STK 提供 Connect 和 Object Model (COM) 两种接口与 MATLAB 交互&#xff0c;推荐使用 COM接口进行二次开发。 确保安装了 STK&#xff0c;并且 MATLAB 可以访问 STK Object Model。 在 MATLAB 中运行&#xff1a; % 添加 STK COM 库&#…

计算机二级MS之PPT

声明&#xff1a;跟着大猫和小黑学习随便记下一些笔记供大家参考&#xff0c;二级考试之前将持续更新&#xff0c;希望大家二级都能轻轻松松过啦&#xff0c;过了二级的大神也可以在评论区留言给点建议&#xff0c;感谢大家&#xff01;&#xff01; 文章目录 考题难点1cm25px…

python中采用opencv作常规的图片处理的方法~~~

在python中&#xff0c;我们经常会需要对图片做灰度/二值化/模糊等处理&#xff0c;这时候opencv就是我们的好帮手了&#xff0c;下面我来介绍一下相关用法: 首先&#xff0c;需要安装opencv-python库: 然后&#xff0c;在你的代码中引用: import cv2 最后就是代码了&#x…

deepseek在pycharm 中的配置和简单应用

对于最常用的调试python脚本开发环境pycharm&#xff0c;如何接入deepseek是我们窥探ai代码编写的第一步&#xff0c;熟悉起来总没坏处。 1、官网安装pycharm社区版&#xff08;免费&#xff09;&#xff0c;如果需要安装专业版&#xff0c;需要另外找破解码。 2、安装Ollama…

Redis数据结构,渐进式遍历,数据库管理

1.Redis的其他数据结构 前面我们主要讲述了Redis中比较常用的集中数据结构String&#xff0c;List&#xff0c;Hash&#xff0c;Set&#xff0c;Zset&#xff0c;但这并不代表Redis只用这几种数据结构还有如Streams&#xff0c;Geospatial&#xff0c;Hyperloglog&#xff0c;…