C++字符串相关内容

news2025/2/11 21:41:56

字符串

字符串,本质上是一个接一个字符的一组字符。字母、数字、符号等。

const char*  字符串名

字符后面会有一个空终止符,为0。

字符串从指针的内存地址开始,然后继续下去,直到它碰到0,然后意识到字符串终止了。

#include <iostream>
int main()
{
	const char* name = "Miles";  //使用const之后,就不能再改变该字符串的内容。
	//name[2] = "a";
	char name2[5] = {'M','i','l','e','s'};
	std::cout << name << std::endl;
	std::cout << name2 << std::endl;
	std::cin.get();
}

为了使得代码更加简洁,通常会引入string。

string中有一个构造函数,它接收char*或const char*参数。

#include <iostream>
#include <string>
int main()
{
	std::string name1 = "Miles";
	std::cout << name1 << std::endl;
	std::cin.get();
}

std::string 是一个有很多功能的类。

name.size()可以找到其尺寸;strlen(),字符串的长度;strcpy,复制字符串;

字符串相加,可以考虑重载运算符:“+=”。

#include <iostream>
#include <string>
int main()
{
	std::string name1 = "Miles";
	name1 += " hello!";
	std::cout << name1 << std::endl;
	std::cin.get();
}
//输出:
//Miles hello!

字符串相加,或者可以用另一种方法进行:将两个相加的字符数组的其中一个,显式调用一个string构造函数。相当于创建了一个字符串,然后附加这个字符串给另一个。

#include <iostream>
#include <string>
int main()
{
	std::string name1 = std::string("Miles")+ " hello!";
	std::cout << name1 << std::endl;
	std::cin.get();
}
//输出:
//Miles hello!

如果要寻找字符串中的文本,可以使用name.find()。

#include <iostream>
#include <string>
int main()
{
	std::string name1 = std::string("Miles")+ " hello!";
	bool contains = name1.find("es") != std::string::npos;  
	std::cout << name1 << std::endl;
	std::cin.get();
}

其中,std::string::npos代表一个不存在的位置。将结果给contains。

#include <iostream>
#include <string>
void PrintString(std::string string)
{
	string += "h";
	std::cout << string << std::endl;
}
int main()
{
	std::string name1 = std::string("Miles")+ " hello!";
	PrintString(name1);
	bool contains = name1.find("es") != std::string::npos;  
	std::cout << name1 << std::endl;
	std::cin.get();
}
//输出:
//Miles hello!h
//Miles hello!

需要分配一个全新的char数组,来存储我们已经得到的完全相同的文本。

字符串复制,实际上相当慢。

当我们需要传递一个字符串,而且在只读的情况下,需要确保通过常量引用传递它。此时通常在前面加上const和引用&。

void PrintString(const std::string& string)
{
	//string += "h";
	std::cout << string << std::endl;
}

字符串字面量

字符串字面量,是在双引号之间的一串字符。

字符串后面有一个额外的字符,叫做:空终止字符。

#include <iostream>
#include <string>

#include <stdlib.h>
int main()
{
	const char name[7] = "Mi\0les";
	std::cout << strlen(name) << std::endl; //打印出字符串的长度。
	std::cin.get();
}

字符串的相加,还能用到string_literals库。在字符串后面加上s,即可实现字符串的相加。

#include <iostream>
#include <string>
#include <stdlib.h>
int main()
{
	using namespace std::string_literals;
	std::string name = "Miles"s + " hello!";
	std::cout << name << std::endl; 
	std::cin.get();
}
//输出:
//Miles hello!

其中,s实际上是一个函数。操作符函数,它返回标准字符串(对象)。

R可以用来忽略转义字符。使得代码更加简洁。

#include <iostream>
#include <string>

#include <stdlib.h>
int main()
{
	const char* example = R"(Line1
line2
line3)"  ;//R忽略转义字符
	const char* ex = "Line1\n"
		"line2\n"
		"line3\n";
	std::cout << example << std::endl;
	std::cout << ex << std::endl;
	std::cin.get();
}

字符串字面量永远保存在内存的只读区域,

关键字const

关键字

const,称为伪关键字。因为它在改变生成代码方面做不了什么。有点像类和结构体的可见性。

#include<iostream>
#include<string>
int main()
{
	const int MAX_AGE = 90;
	std::cin.get();
}

在堆上建立一个整数,就能得到一个指针。此时有两个方案:

  • 逆向引用dereference
  • 重新分配实际的指针,这样会指向别的东西

用const强制定义一个变量为只读常量。但可以强制改变这个定义,如下,利用(int*)可以将const只读常量的值,逆向引用传给另一个变量。

#include<iostream>
#include<string>
int main()
{
	const int MAX_AGE = 90;
	int* a = new int;
	*a = 2;
	a = (int*)&MAX_AGE;
	std::cout << *a << std::endl;
	std::cin.get();
}
//输出:
//90

但,const int* 意味着,不能修改指针指向的内容。该用法和int const*一致。

const int* a = new int;
int const* a = new int;

int* const可以改变指针指向的内容,但不能把实际的指针本身重新赋值,指向别的东西

#include<iostream>
#include<string>
class Entity
{
private:
	int m_X, m_Y;
public:
	int GetX() const //此用法,只能读,不能写。该方法只能进行读操作,不能进行其他的修改操作。
	{
		return m_X;
	}
	void SetX(int x)
	{
		m_X = x;
	}
};
int main()
{
	const int MAX_AGE = 90;
	int* a = new int;
	*a = 2;
	a = (int*)&MAX_AGE;
	std::cout << *a << std::endl;
	std::cin.get();
}

如果用再次复制Entity类的方式,需要分配空间,那样会很慢。可以通过常量引用传递的方式。也就是:const Entity& e

#include<iostream>
#include<string>
class Entity
{
private:
	int m_X, m_Y;
public:
	int GetX() const
	{
		return m_X;
	}
	void SetX(int x)
	{
		m_X = x;
	}
};
void PrintEntity(const Entity& e)
{
	std::cout << e.GetX() << std::endl; //由于GetX()用到了const,才能在这里用到e.GetX()
}
int main()
{
	const int MAX_AGE = 90;
	int* a = new int;
	*a = 2;
	a = (int*)&MAX_AGE;
	std::cout << *a << std::endl;
	std::cin.get();
}

如果要对int GetX() const中的变量进行修改的话,可以引入mutable:

#include<iostream>
#include<string>
class Entity
{
private:
	int m_X, m_Y;
	mutable int var;
public:
	int GetX() const
	{
		var = 2;
		return m_X;
	}
	void SetX(int x)
	{
		m_X = x;
	}
};

mutable允许函数是常量的方法,可以修改变量。

关键字mutable

mutable的两种不同用途:

  • 与const一同使用。
  • 用在lambda表达式中。

或者mutable可以同时覆盖两种情况。

#include <iostream>
#include <string>
class Entity
{
private:
	std::string m_Name;
	mutable int m_DebugCount;
public:
	const std::string& GetName() const
	{
		m_DebugCount++;  //每次调用get的时候,都会记一次数
		return m_Name;
	}
};
int main()
{
	const Entity e;
	e.GetName();

	std::cin.get();
}

在类成员中使用mutable。

lambda基本上像一个一次性的小函数,可以写出来并赋值给一个变量。

#include <iostream>
#include <string>

class Entity
{
private:
	std::string m_Name;
	mutable int m_DebugCount;
public:
	const std::string& GetName() const
	{
		m_DebugCount++;  
		return m_Name;
	}
};
int main()
{
	const Entity e;
	e.GetName();
//lambda的使用如下:
	int x = 8;
	auto f = [&]()
	{
		x++;
		std::cout << x << std::endl;
	};
	f();
	std::cin.get();
}

lambda还有其他的用法,三种auto用法一致。

int x = 8;
auto f = [&]()
{
	x++;
	std::cout << x << std::endl;
};
auto f = [=]() mutable
{
	x++;
	std::cout << x << std::endl;
};
auto f = [=]()
{
	int y = x;
	y++;
	std::cout << x << std::endl;
};
f();

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2295538.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Windows Docker笔记-Docker拉取镜像

通过在前面的章节《安装docker》中&#xff0c;了解并安装成功了Docker&#xff0c;本章讲述如何使用Docker拉取镜像。 使用Docker&#xff0c;主要是想要创建并运行Docker容器&#xff0c;而容器又要根据Docker镜像来创建&#xff0c;那么首当其冲&#xff0c;必须要先有一个…

穷举vs暴搜vs深搜vs回溯vs剪枝系列一>黄金矿工

目录 决策树&#xff1a;代码设计代码&#xff1a; 决策树&#xff1a; 代码设计 代码&#xff1a; class Solution {boolean[][] vis;int ret,m,n;public int getMaximumGold(int[][] grid) {m grid.length;n grid[0].length;vis new boolean[m][n]; for(int i 0; i <…

07苍穹外卖之redis缓存商品、购物车(redis案例缓存实现)

课程内容 缓存菜品 缓存套餐 添加购物车 查看购物车 清空购物车 功能实现&#xff1a;缓存商品、购物车 效果图&#xff1a; 1. 缓存菜品 1.1 问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压…

使用DeepSeek的技巧笔记

来源&#xff1a;新年逼自己一把&#xff0c;学会使用DeepSeek R1_哔哩哔哩_bilibili 前言 对于DeepSeek而言&#xff0c;我们不再需要那么多的提示词技巧&#xff0c;但还是要有两个注意点&#xff1a;你需要理解大语言模型的工作原理与局限,这能帮助你更好的知道AI可完成任务…

Unity-Mirror网络框架-从入门到精通之CouchCoop示例

文章目录 前言示例NetworkManagerCouchPlayerManagerCouchPlayerPlatformMovementMovingPlatformCameraViewForAllCanvasScript前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多…

Spring Boot Web 入门

目录 Spring Boot Web 是 Spring Boot 框架的一个重要模块&#xff0c;它简化了基于 Spring 的 Web 应用程序的开发过程。以下是一个 Spring Boot Web 项目的入门指南&#xff0c;涵盖了项目创建、代码编写、运行等关键步骤。 1. 项目创建 使用 Spring Initializr 使用 IDE …

DeepSeek图解10页PDF

以前一直在关注国内外的一些AI工具&#xff0c;包括文本型、图像类的一些AI实践&#xff0c;最近DeepSeek突然爆火&#xff0c;从互联网收集一些资料与大家一起分享学习。 本章节分享的文件为网上流传的DeepSeek图解10页PDF&#xff0c;免费附件链接给出。 1 本地 1 本地部…

【Golang学习之旅】Go + MySQL 数据库操作详解

文章目录 前言1. GORM简介2. 安装GORM并连接MySQL2.1 安装GORM和MySQL驱动2.2 连接MySQL 3. GORM数据模型&#xff08;Model&#xff09;3.1 定义User结构体3.2 自动迁移&#xff08;AutoMigrate&#xff09; 4. GORM CRUD 操作4.1 插入数据&#xff08;Create&#xff09;4.2 …

ArgoCD实战指南:GitOps驱动下的Kubernetes自动化部署与Helm/Kustomize集成

摘要 ArgoCD 是一种 GitOps 持续交付工具,专为 Kubernetes 设计。它能够自动同步 Git 仓库中的声明性配置,并将其应用到 Kubernetes 集群中。本文将介绍 ArgoCD 的架构、安装步骤,以及如何结合 Helm 和 Kustomize 进行 Kubernetes 自动化部署。 引言 为什么选择 ArgoCD?…

每日Attention学习22——Inverted Residual RWKV

模块出处 [arXiv 25] [link] [code] RWKV-UNet: Improving UNet with Long-Range Cooperation for Effective Medical Image Segmentation 模块名称 Inverted Residual RWKV (IR-RWKV) 模块作用 用于vision的RWKV结构 模块结构 模块代码 注&#xff1a;cpp扩展请参考作者原…

机器学习之数学基础:线性代数、微积分、概率论 | PyTorch 深度学习实战

前一篇文章&#xff0c;使用线性回归模型逼近目标模型 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课&#xff1a;引领人工智能新时代【梗直哥瞿炜】 线性代数、微积分、概率论 …

UNI-MOL: A UNIVERSAL 3D MOLECULAR REPRESENTATION LEARNING FRAMEWORK

UNI-MOL: A UNIVERSAL 3D MOLECULAR REPRESENTATION LEARNING FRAMEWORK Neurips23 推荐指数&#xff1a;#paper/⭐⭐⭐#​&#xff08;工作量不小) 动机 在大多数分子表征学习方法中&#xff0c;分子被视为 1D 顺序标记或2D 拓扑图&#xff0c;这限制了它们为下游任务整合…

SQL Server查询计划操作符(7.3)——查询计划相关操作符(6)

7.3. 查询计划相关操作符 48)Key Lookup:该操作符对一个有簇索引的表进行书签查找。参数列包含簇索引的名字和用于查找簇索引中数据行的簇键。该操作符总是伴随一个Nested Loops操作符。如果其参数列中出现WITH PREFETCH子句,则查询处理器已决定使用异步预取(预读,read-ah…

C语言【基础篇】之数组——解锁多维与动态数组的编程奥秘

数组 &#x1f680;前言&#x1f99c;数组的由来与用途&#x1f31f;一维数组详解&#x1f58a;️二维数组进阶&#x1f4af;动态数组原理&#x1f914;常见误区扫盲&#x1f4bb;学习路径建议✍️总结 &#x1f680;前言 大家好&#xff01;我是 EnigmaCoder。本文收录于我的专…

掌握API和控制点(从Java到JNI接口)_38 JNI从C调用Java函数 01

1. Why? 将控制点下移到下C/C层 对古典视角的反思 App接近User&#xff0c;所以App在整体架构里&#xff0c;是主导者&#xff0c;拥有控制权。所以&#xff0c; App是架构的控制点所在。Java函数调用C/C层函数&#xff0c;是合理的。 但是EIT造形告诉我们&#xff1a; App…

windows蓝牙驱动开发-蓝牙 LE 邻近感应配置文件

邻近感应检测是蓝牙低功耗 (LE) 的常见用途。 本部分提供了创建可用于开发 UWP 设备应用的邻近感应配置文件的设备实现的指南。 在开发此应用之前&#xff0c;应熟悉蓝牙 LE 函数和蓝牙 LE 邻近感应配置文件规范。 示例服务声明 蓝牙低功耗引入了一个新的物理层&#xff0c;…

免费windows pdf编辑工具Epdf

Epdf&#xff08;完全免费&#xff09; 作者&#xff1a;不染心 时间&#xff1a;2025/2/6 Github: https://github.com/dog-tired/Epdf Epdf Epdf 是一款使用 Rust 编写的 PDF 编辑器&#xff0c;目前仍在开发中。它提供了一系列实用的命令行选项&#xff0c;方便用户对 PDF …

C++:类和对象初识

C&#xff1a;类和对象初识 前言类的引入与定义引入定义类的两种定义方法1. 声明和定义全部放在类体中2. 声明和定义分离式 类的成员变量命名规则 类的访问限定符及封装访问限定符封装 类的作用域与实例化类的作用域类实例化实例化方式&#xff1a; 类对象模型类对象的大小存储…

伪分布式Spark3.4.4安装

参考&#xff1a;Spark2.1.0入门&#xff1a;Spark的安装和使用_厦大数据库实验室博客 我的版本&#xff1a; hadoop 3.1.3 hbase 2.2.2 java openjdk version "1.8.0_432" 问了chatgpt,建议下载Spark3.4.4&#xff0c;不适合下载Spark 2.1.0: step1 Spark下载…

kafka服务端之控制器

文章目录 概述控制器的选举与故障恢复控制器的选举故障恢复 优雅关闭分区leader的选举 概述 在Kafka集群中会有一个或多个broker&#xff0c;其中有一个broker会被选举为控制器&#xff08;Kafka Controler&#xff09;&#xff0c;它负责管理整个集群中所有分区和副本的状态。…