使用DeepSeek的技巧笔记

news2025/2/11 9:02:45

来源:新年逼自己一把,学会使用DeepSeek R1_哔哩哔哩_bilibili

前言

        对于DeepSeek而言,我们不再需要那么多的提示词技巧,但还是要有两个注意点:你需要理解大语言模型的工作原理与局限,这能帮助你更好的知道AI可完成任务的边界;在和R1合作时,你最好有管理者的思维和经验,你需要知道如何向R1这个聪明程度比你高很多的下属布置你的任务。

        如果不勾选深度思考这个选项,那么就是使用系统默认的V3大模型;最近(2025/2/6)因为网络攻击的问题,联网搜索可能使用效果不佳,但事实上如果想要获取的知识是在2023年12月之前的,那么就没有打开联网搜索的必要。

推理模型与指令模型

        OpenAI的ChatGpt、豆包和DeepSeek-v3都属于指令模型(instruct model),而我们的深度思考R1属于推理模型。instruct model这类模型是专门设计用于遵循指令来生成内容而推理模型是专注于逻辑推理问题解决的模型,能够自主处理需要多步骤分析因果推断或者复杂决策的这种任务。

理解大模型语言的本质

特点1

大模型在训练时是将内容token化的,大模型所看到的和理解的世界和我们不太一样。

大型语言模型的预训练,本质上是让模型建立文本片段之间关联的规律,为了实现这个目标,所有给大模型投喂的数据资料都会经过特殊处理。首先是将文本切割名为token的基本单元;

然后将这些token转换为数字编码,有点类似于将现实世界的自然语言转换为只有大模型才可以理解的“密码本”;

由于这一种训练方式,导致很多指令型大语言模型无法正确回答strawberry(草莓)这个单词有几个英文字母“r”。

因为strawberry被切割为了str、aw、berry三个toekn,随后语言模型只数了str和berry的数字编码。虽然推理模型可以做到这种功能,但实际过程也很麻烦。

特点2

大模型知识是存在截至时间的。最经典的例子:

对于大模型而言它的知识储备存在三重壁垒,它的预训练需要处理PB级别的原始数据,而这种原始数据的清洗需要经过大量的工序会占用非常多的时间。训练完成之后,他还要经过监督微调强化学习以及基于人类反馈的强化学习等耗时工序。DeepSeek R1的知识库训练截止时间是在2023年的10月至12月之间,恰好是Faker选手夺取四冠之前。想要突破这些局限性,可以选择联网搜索、提供文献和输入提示词等方法来解决。

特点3

大模型缺乏自我认知/自我意识

大模型既不能回应你叫他的具体名字,也无法回答你对它的详细特点的提问。关于大模型的使用技巧,往往你也无法询问他本身。

但是一些比较成熟的指令模型已经约束了常见的问答内容。

特点4

记忆有限(64K/128K)

大模型在对话过程中的上下文长度是受限的,R1现在只有64K长度的token。一次性投喂超过4万字的文档,它就只会通过RAG(搜索增强的方式)。

特点5

输出长度受限(4K/8K)

单词回答最多输出2000-4000个中文字符

使用技巧

技巧1:提出明确的要求
技巧2:要求特定的风格
技巧3:提供充分的任务背景信息
技巧4:主动标注自己的知识状态
技巧5:定义目标,而非过程
技巧6:提供AI不具备的知识背景

技巧7:从开放到收敛

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2295534.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity-Mirror网络框架-从入门到精通之CouchCoop示例

文章目录 前言示例NetworkManagerCouchPlayerManagerCouchPlayerPlatformMovementMovingPlatformCameraViewForAllCanvasScript前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多…

Spring Boot Web 入门

目录 Spring Boot Web 是 Spring Boot 框架的一个重要模块,它简化了基于 Spring 的 Web 应用程序的开发过程。以下是一个 Spring Boot Web 项目的入门指南,涵盖了项目创建、代码编写、运行等关键步骤。 1. 项目创建 使用 Spring Initializr 使用 IDE …

DeepSeek图解10页PDF

以前一直在关注国内外的一些AI工具,包括文本型、图像类的一些AI实践,最近DeepSeek突然爆火,从互联网收集一些资料与大家一起分享学习。 本章节分享的文件为网上流传的DeepSeek图解10页PDF,免费附件链接给出。 1 本地 1 本地部…

【Golang学习之旅】Go + MySQL 数据库操作详解

文章目录 前言1. GORM简介2. 安装GORM并连接MySQL2.1 安装GORM和MySQL驱动2.2 连接MySQL 3. GORM数据模型(Model)3.1 定义User结构体3.2 自动迁移(AutoMigrate) 4. GORM CRUD 操作4.1 插入数据(Create)4.2 …

ArgoCD实战指南:GitOps驱动下的Kubernetes自动化部署与Helm/Kustomize集成

摘要 ArgoCD 是一种 GitOps 持续交付工具,专为 Kubernetes 设计。它能够自动同步 Git 仓库中的声明性配置,并将其应用到 Kubernetes 集群中。本文将介绍 ArgoCD 的架构、安装步骤,以及如何结合 Helm 和 Kustomize 进行 Kubernetes 自动化部署。 引言 为什么选择 ArgoCD?…

每日Attention学习22——Inverted Residual RWKV

模块出处 [arXiv 25] [link] [code] RWKV-UNet: Improving UNet with Long-Range Cooperation for Effective Medical Image Segmentation 模块名称 Inverted Residual RWKV (IR-RWKV) 模块作用 用于vision的RWKV结构 模块结构 模块代码 注:cpp扩展请参考作者原…

机器学习之数学基础:线性代数、微积分、概率论 | PyTorch 深度学习实战

前一篇文章,使用线性回归模型逼近目标模型 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课:引领人工智能新时代【梗直哥瞿炜】 线性代数、微积分、概率论 …

UNI-MOL: A UNIVERSAL 3D MOLECULAR REPRESENTATION LEARNING FRAMEWORK

UNI-MOL: A UNIVERSAL 3D MOLECULAR REPRESENTATION LEARNING FRAMEWORK Neurips23 推荐指数:#paper/⭐⭐⭐#​(工作量不小) 动机 在大多数分子表征学习方法中,分子被视为 1D 顺序标记或2D 拓扑图,这限制了它们为下游任务整合…

SQL Server查询计划操作符(7.3)——查询计划相关操作符(6)

7.3. 查询计划相关操作符 48)Key Lookup:该操作符对一个有簇索引的表进行书签查找。参数列包含簇索引的名字和用于查找簇索引中数据行的簇键。该操作符总是伴随一个Nested Loops操作符。如果其参数列中出现WITH PREFETCH子句,则查询处理器已决定使用异步预取(预读,read-ah…

C语言【基础篇】之数组——解锁多维与动态数组的编程奥秘

数组 🚀前言🦜数组的由来与用途🌟一维数组详解🖊️二维数组进阶💯动态数组原理🤔常见误区扫盲💻学习路径建议✍️总结 🚀前言 大家好!我是 EnigmaCoder。本文收录于我的专…

掌握API和控制点(从Java到JNI接口)_38 JNI从C调用Java函数 01

1. Why? 将控制点下移到下C/C层 对古典视角的反思 App接近User,所以App在整体架构里,是主导者,拥有控制权。所以, App是架构的控制点所在。Java函数调用C/C层函数,是合理的。 但是EIT造形告诉我们: App…

windows蓝牙驱动开发-蓝牙 LE 邻近感应配置文件

邻近感应检测是蓝牙低功耗 (LE) 的常见用途。 本部分提供了创建可用于开发 UWP 设备应用的邻近感应配置文件的设备实现的指南。 在开发此应用之前,应熟悉蓝牙 LE 函数和蓝牙 LE 邻近感应配置文件规范。 示例服务声明 蓝牙低功耗引入了一个新的物理层,…

免费windows pdf编辑工具Epdf

Epdf(完全免费) 作者:不染心 时间:2025/2/6 Github: https://github.com/dog-tired/Epdf Epdf Epdf 是一款使用 Rust 编写的 PDF 编辑器,目前仍在开发中。它提供了一系列实用的命令行选项,方便用户对 PDF …

C++:类和对象初识

C:类和对象初识 前言类的引入与定义引入定义类的两种定义方法1. 声明和定义全部放在类体中2. 声明和定义分离式 类的成员变量命名规则 类的访问限定符及封装访问限定符封装 类的作用域与实例化类的作用域类实例化实例化方式: 类对象模型类对象的大小存储…

伪分布式Spark3.4.4安装

参考:Spark2.1.0入门:Spark的安装和使用_厦大数据库实验室博客 我的版本: hadoop 3.1.3 hbase 2.2.2 java openjdk version "1.8.0_432" 问了chatgpt,建议下载Spark3.4.4,不适合下载Spark 2.1.0: step1 Spark下载…

kafka服务端之控制器

文章目录 概述控制器的选举与故障恢复控制器的选举故障恢复 优雅关闭分区leader的选举 概述 在Kafka集群中会有一个或多个broker,其中有一个broker会被选举为控制器(Kafka Controler),它负责管理整个集群中所有分区和副本的状态。…

【R语言】数据分析

一、描述性统计量 借助R语言内置的airquality数据集进行简单地演示: 1、集中趋势:均值和中位数 head(airquality) # 求集中趋势 mean(airquality$Ozone, na.rmT) # 求均值 median(airquality$Ozone, na.rmT) # 求中位数 2、众数 众数(mod…

传输层协议 UDP 与 TCP

🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 前置复盘🦋 传输层🦋 再谈端口号🦋 端口号范围划分🦋 认识知名端口号 (Well-Know Port Number) 二&#xf…

Java/Kotlin双语革命性ORM框架Jimmer(一)——介绍与简单使用

概览 Jimmer是一个Java/Kotlin双语框架 包含一个革命性的ORM 以此ORM为基础打造了一套综合性方案解决方案,包括 DTO语言 更全面更强大的缓存机制,以及高度自动化的缓存一致性 更强大客户端文档和代码生成能力,包括Jimmer独创的远程异常 …

剪辑学习整理

文章目录 1. 剪辑介绍 1. 剪辑介绍 剪辑可以干什么?剪辑分为哪些种类? https://www.bilibili.com/video/BV15r421p7aF/?spm_id_from333.337.search-card.all.click&vd_source5534adbd427e3b01c725714cd93961af 学完剪辑之后如何找工作or兼职&#…