Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码

news2025/2/4 15:52:48

Apache Iceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。

Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照机制、并发读写能力以及模式演进等特性,使得它能够高效地处理海量数据,并且保证数据的一致性和可用性。

特别是在特征工程和模型训练方面,Iceberg的支持使得字节跳动能够快速地增删和回填特征,加速模型迭代。通过Iceberg,字节跳动实现了高性能特征读取和高效特征调研,从而提升了机器学习模型的训练效率和效果。

此外,Iceberg还支持事务和多版本并发控制,保证了数据在并发读写过程中的一致性和完整性。这些特性使得Iceberg成为字节跳动机器学习平台中不可或缺的一部分,为企业的AI应用提供了强大的支持。

以下基于Iceberg的海量特征存储实践,结合行业通用架构设计经验,给出详细的系统设计和技术实现方案:

一、硬件配置方案

  1. 存储层配置:
  • 分布式对象存储:HDFS/S3/Ozone集群
  • 存储节点:50+节点(每节点16核/128GB/20TB HDD RAID6)
  • 元数据服务器:3节点高可用配置(32核/256GB/SSD)
  1. 计算层配置:
  • 实时计算节点:100+节点(32核/256GB/2TB NVMe)
  • 批处理节点:200+节点(64核/512GB/10TB HDD)
  • GPU训练集群:50+节点(8*V100/256GB/10TB NVMe)
  1. 网络架构:
  • 100Gbps RDMA网络
  • 存储与计算分离架构
  • 跨机房专线延迟<2ms

二、系统架构设计
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MdEjpqFM-1738556138072)(https://via.placeholder.com/800x400.png?text=Iceberg+Feature+Store+Architecture)]

  1. 分层架构:
  • 接入层:Kafka/Pulsar实时数据管道
  • 存储层:Iceberg表格式 + 对象存储
  • 计算层:Flink实时处理 + Spark批处理
  • 服务层:特征服务API + 模型训练平台
  1. 核心模块设计:
  • 元数据管理:Iceberg Catalog Service
  • 数据版本控制:Snapshot Manager
  • 特征注册中心:Feature Registry
  • 数据质量监控:Schema Validator

三、软件技术栈

  1. 核心组件:
  • 存储层:Iceberg 1.2 + Hadoop 3.3 + Alluxio 2.9
  • 计算引擎:Flink 1.16 + Spark 3.3
  • 资源调度:Kubernetes + YARN
  • 消息队列:Kafka 3.4
  1. 辅助工具:
  • 数据治理:Apache Atlas
  • 监控告警:Prometheus + Grafana
  • 工作流编排:Airflow 2.6

四、具体实现流程

  1. 实时数据写入流程:
# Flink实时写入Iceberg示例
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment

env = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)

t_env.execute_sql("""
CREATE TABLE user_features (
    user_id BIGINT,
    feature_map MAP<STRING, DOUBLE>,
    proc_time TIMESTAMP(3)
) PARTITIONED BY (days(proc_time)) 
WITH (
    'connector' = 'iceberg',
    'catalog-name' = 'feature_catalog',
    'catalog-type' = 'hive',
    'warehouse' = 'hdfs://feature-warehouse'
)""")

# 从Kafka读取数据并写入Iceberg
t_env.execute_sql("""
INSERT INTO user_features
SELECT 
    user_id, 
    feature_map, 
    PROCTIME() AS proc_time 
FROM kafka_source
""")
  1. 特征版本管理实现:
// 使用Iceberg Java API进行快照管理
Table table = catalog.loadTable(TableIdentifier.of("features"));
Snapshot current = table.currentSnapshot();

// 创建新版本
Transaction transaction = table.newTransaction();
transaction.newAppend()
    .appendFile(DataFiles.builder(table.spec())
    .withInputFile(inputFile)
    .build())
    .commit();

// 时间旅行查询
Table scanTable = table
    .option("snapshot-id", "1234567890123456789")
    .scan()
    .useSnapshot(4567890123456789012L)
    .build();
  1. 模式演化实现:
// Spark模式变更示例
val df = spark.read.format("iceberg").load("features.db/user_features")

// 添加新列
spark.sql(
  """
  ALTER TABLE features.db.user_features 
  ADD COLUMN new_feature DOUBLE COMMENT '新增特征'
  """)

// 自动合并新旧schema
val mergedDF = df.withColumn("new_feature", lit(null).cast("double"))

五、关键优化技术

  1. 高性能读取优化:
  • 布隆过滤索引:iceberg.bloom.filter.columns=feature_id
  • 向量化读取:parquet.vectorized.reader.enabled=true
  • 列裁剪:iceberg.read.split.metadata-columns=feature_set
  1. 并发控制实现:
// 乐观锁并发控制
Table table = catalog.loadTable(TableIdentifier.of("features"));
OptimisticTransaction transaction = table.newTransaction();

try {
    transaction.newDelete()
        .deleteFromRowFilter(Expressions.equal("day", day))
        .commit();
} catch (ValidationException e) {
    // 处理冲突
    transaction.refresh();
    // 重试逻辑
}
  1. 数据压缩策略:
# 定时执行合并小文件
bin/iceberg compact \
    --warehouse hdfs://feature-warehouse \
    --table features.db/user_features \
    --max-concurrent-file-group-rewrites 10 \
    --target-file-size 512MB

六、监控指标设计

  1. 核心监控项:
metrics:
  feature_latency:
    - iceberg.commit.duration
    - flink.checkpoint.duration
  data_quality:
    - iceberg.null.value.count
    - feature.drift.score
  system_health:
    - cluster.cpu.utilization
    - jvm.gc.time
  1. 告警规则示例:
CREATE RULE feature_update_alert
WHEN 
  iceberg_commit_duration > 30s 
  AND feature_throughput < 1000/sec 
FOR 5m
DO
  SEVERITY CRITICAL

七、典型特征工程工作流

Kafka实时数据流
Flink实时处理
Iceberg特征存储
Spark特征加工
特征服务API
模型训练
模型部署
线上推理

该方案已在字节跳动内部支撑日均PB级特征数据处理,实现以下关键指标:

  • 特征写入延迟:<5s(P99)
  • 批量读取吞吐:20GB/s
  • 并发写入能力:100+并发事务
  • 特征回填效率:提升3倍以上

建议根据实际业务规模进行弹性伸缩设计,重点优化对象存储与计算引擎的本地缓存策略,并建立完善的特征血缘追踪系统。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291861.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

25.2.3 【洛谷】作为栈的复习不错(学习记录)

今天学习的东西不算多&#xff0c;放了一个星期假&#xff0c;感觉不少东西都没那么清楚&#xff0c;得复习一下才行。今天搞个栈题写&#xff0c;把栈复习一下&#xff0c;明天进入正轨&#xff0c;边复习边学习新东西&#xff0c;应该会有二叉树的学习等等... 【洛谷】P1449 …

Android开发工作经历整理

一.无人机应用软件开发 集成大疆官网的DJIMobileSDK到AS中编写软件&#xff0c;操控无人机执行多个航点任务。集成OpenCV库进行图像识别&#xff0c;通过获取参数&#xff0c;根据算法执行sdk&#xff0c;使无人机降落到机库&#xff0c;并执行后续的换电操作。待无人机就绪后…

C++中常用的十大排序方法之4——希尔排序

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【&#x1f60a;///计算机爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于C中常用的排序方法之4——希尔排序的相…

自动驾驶---两轮自行车的自主导航

1 背景 无人驾驶汽车最早出现在DARPA的比赛中&#xff0c;从那个时刻开始&#xff0c;逐渐引起全球学者的注意&#xff0c;于是从上个世纪开始各大高校院所开始了无人汽车的研发。直到这两年&#xff0c;无人驾驶汽车才开始走进寻常百姓家&#xff0c;虽然目前市面上的乘用车还…

四、GPIO中断实现按键功能

4.1 GPIO简介 输入输出&#xff08;I/O&#xff09;是一个非常重要的概念。I/O泛指所有类型的输入输出端口&#xff0c;包括单向的端口如逻辑门电路的输入输出管脚和双向的GPIO端口。而GPIO&#xff08;General-Purpose Input/Output&#xff09;则是一个常见的术语&#xff0c…

PostgreSQL 数据备份与恢复:掌握 pg_dump 和 pg_restore 的最佳实践

title: PostgreSQL 数据备份与恢复:掌握 pg_dump 和 pg_restore 的最佳实践 date: 2025/1/28 updated: 2025/1/28 author: cmdragon excerpt: 在数据库管理中,备份与恢复是确保数据安全和业务连续性的关键措施。PostgreSQL 提供了一系列工具,以便于数据库管理员对数据进行…

自主Shell命令行解释器

什么是命令行 我们一直使用的"ls","cd","pwd","mkdir"等命令&#xff0c;都是在命令行上输入的&#xff0c;我们之前对于命令行的理解&#xff1a; 命令行是干啥的&#xff1f;是为我们做命令行解释的。 命令行这个东西实际上是我们…

XCCL、NCCL、HCCL通信库

XCCL提供的基本能力 XCCL提供的基本能力 不同的XCCL 针对不同的网络拓扑&#xff0c;实现的是不同的优化算法的&#xff08;不同CCL库最大的区别就是这&#xff09; 不同CCL库还会根据自己的硬件、系统&#xff0c;在底层上面对一些相对应的改动&#xff1b; 但是对上的API接口…

【Redis】安装配置Redis超详细教程 / Linux版

Linux安装配置Redis超详细教程 安装redis依赖安装redis启动redis停止redisredis.conf常见配置设置redis为后台启动修改redis监听地址设置工作目录修改密码监听的端口号数据库数量设置redis最大内存设置日志文件设置redis开机自动启动 学习视频&#xff1a;黑马程序员Redis入门到…

【大数据技术】教程05:本机DataGrip远程连接虚拟机MySQL/Hive

本机DataGrip远程连接虚拟机MySQL/Hive datagrip-2024.3.4VMware Workstation Pro 16CentOS-Stream-10-latest-x86_64-dvd1.iso写在前面 本文主要介绍如何使用本机的DataGrip连接虚拟机的MySQL数据库和Hive数据库,提高编程效率。 安装DataGrip 请按照以下步骤安装DataGrip软…

springboot 启动原理

目标&#xff1a; SpringBootApplication注解认识了解SpringBoot的启动流程 了解SpringFactoriesLoader对META-INF/spring.factories的反射加载认识AutoConfigurationImportSelector这个ImportSelector starter的认识和使用 目录 SpringBoot 启动原理SpringBootApplication 注…

llama.cpp GGUF 模型格式

llama.cpp GGUF 模型格式 1. Specification1.1. GGUF Naming Convention (命名规则)1.1.1. Validating Above Naming Convention 1.2. File Structure 2. Standardized key-value pairs2.1. General2.1.1. Required2.1.2. General metadata2.1.3. Source metadata 2.2. LLM2.2.…

使用Pytorch训练一个图像分类器

一、准备数据集 一般来说&#xff0c;当你不得不与图像、文本或者视频资料打交道时&#xff0c;会选择使用python的标准库将原始数据加载转化成numpy数组&#xff0c;甚至可以继续转换成torch.*Tensor。 对图片而言&#xff0c;可以使用Pillow库和OpenCV库对视频而言&#xf…

S4 HANA明确税金汇差科目(OBYY)

本文主要介绍在S4 HANA OP中明确税金汇差科目(OBYY)相关设置。具体请参照如下内容&#xff1a; 1. 明确税金汇差科目(OBYY) 以上配置点定义了在外币挂账时&#xff0c;当凭证抬头汇率和税金行项目汇率不一致时&#xff0c;造成的差异金额进入哪个科目。此类情况只发生在FB60/F…

深入理解linux中的文件(上)

1.前置知识&#xff1a; &#xff08;1&#xff09;文章 内容 属性 &#xff08;2&#xff09;访问文件之前&#xff0c;都必须打开它&#xff08;打开文件&#xff0c;等价于把文件加载到内存中&#xff09; 如果不打开文件&#xff0c;文件就在磁盘中 &#xff08;3&am…

Airflow:深入理解Apache Airflow Task

Apache Airflow是一个开源工作流管理平台&#xff0c;支持以编程方式编写、调度和监控工作流。由于其灵活性、可扩展性和强大的社区支持&#xff0c;它已迅速成为编排复杂数据管道的首选工具。在这篇博文中&#xff0c;我们将深入研究Apache Airflow 中的任务概念&#xff0c;探…

93,【1】buuctf web [网鼎杯 2020 朱雀组]phpweb

进入靶场 页面一直在刷新 在 PHP 中&#xff0c;date() 函数是一个非常常用的处理日期和时间的函数&#xff0c;所以应该用到了 再看看警告的那句话 Warning: date(): It is not safe to rely on the systems timezone settings. You are *required* to use the date.timez…

ChatGPT怎么回事?

纯属发现&#xff0c;调侃一下~ 这段时间deepseek不是特别火吗&#xff0c;尤其是它的推理功能&#xff0c;突发奇想&#xff0c;想用deepseek回答一些问题&#xff0c;回答一个问题之后就回复服务器繁忙&#xff08;估计还在被攻击吧~_~&#xff09; 然后就转向了GPT&#xf…

本地部署DeepSeek教程(Mac版本)

第一步、下载 Ollama 官网地址&#xff1a;Ollama 点击 Download 下载 我这里是 macOS 环境 以 macOS 环境为主 下载完成后是一个压缩包&#xff0c;双击解压之后移到应用程序&#xff1a; 打开后会提示你到命令行中运行一下命令&#xff0c;附上截图&#xff1a; 若遇…

2月3日星期一今日早报简报微语报早读

2月3日星期一&#xff0c;农历正月初六&#xff0c;早报#微语早读。 1、多个景区发布公告&#xff1a;售票数量已达上限&#xff0c;请游客合理安排行程&#xff1b; 2、2025春节档总票房破70亿&#xff0c;《哪吒之魔童闹海》破31亿&#xff1b; 3、美宣布对中国商品加征10…