使用Pytorch训练一个图像分类器

news2025/2/4 14:46:43

一、准备数据集

一般来说,当你不得不与图像、文本或者视频资料打交道时,会选择使用python的标准库将原始数据加载转化成numpy数组,甚至可以继续转换成torch.*Tensor。

  • 对图片而言,可以使用Pillow库和OpenCV库
  • 对视频而言,可以使用scipy库和librosa库
  • 对文本而言,可以使用基于原生Python或Cython加载,或NLTK和SpaCy等。

Pytorch特别针对视觉方面创建torchvision库,其中包含能够加载ImageNet、CIFAR10和MNIST等数据集的数据加载功能,对图像的数据增强功能,即torchvision.datasetstorch.utils.data.DataLoader

这为大家搭建数据集提供了极大的便利,避免了需要自己写样板代码的情况。

本次我们使用CIFAR10数据集。这是一个含有“飞机”、“汽车”、“鸟”、“猫”、“鹿”、“狗”、“青蛙”、“马”、“轮船”和“卡车”等10个分类的数据集。数据集中每张图像均为[C×H×W]=[3×32×32]即3通道的高32像素宽32像素的彩色图像。

CIFAR-10数据集示例

二、训练图像分类器

下面的步骤大概可以分成5个有序部分:

  1. 用 torchvision 载入(loading)并归一化(normalize)CIFAR10训练数据集和测试数据集
  2. 定义卷积神经网络(CNN)
  3. 定义损失函数和优化器
  4. 训练网络
  5. 测试网络
P.S. 以下给出的代码均为在CPU上运行的代码。但本人在pycharm中运行的为自己修改过的在GPU上训练的代码,示例结果和截图也都是GPU运行的结果。

2.1 载入并归一化CIFAR10数据集

用torchvision载入CIFAR10

import torch
import torchvision
import torchvision.transforms as transforms

torchvision加载的数据集是PILImage,数据范围[0,1]。我们需要使用transform函数将其归一化(normalize)为[-1,1]。

细心的伙伴发现了我将英文的normalize翻译成了“归一化”而不是标准化,这是因为接下来的代码你会看到预处理阶段transformer变量存储的处理操作仅仅是运用了normalize的计算规则将数据范围进行了缩放,并没有改变数据的分布,因此翻译成“归一化”更合理。

NOTE.(抄的原文,以防有小伙伴真的遇到这个意外问题)
If running on Windows and you get a BrokenPipeError,
try setting the num_worker of torch.utils.data.DataLoader() to 0。
--snip--
 
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
 
batch_size = 4
 
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
 
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)
 
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

transform中的ToTensor和Normalize函数究竟在做什么,以及为什么要归一化等问题感兴趣的小伙伴可以阅读附录中的序号1~3文章,其中

  • 博主“小研一枚”[1]通过源码为我们讲解函数的计算行为定义等知识点
  • 答主"Transformer"[2]通过知乎专栏为我们做了几组代码实例。而我们则要看清文章、留言区争论的核心与我们真正求索的问题之间的区别和联系,避免被争论本身误导
  • 答主“JMD”[3]则为我们科普归一化的相关知识

书归正题,上述代码第一次运行的结果可能是这样子的:

数据集加载运行日志

此时,我们可以使用numpy库和matplotlib库查看数据集中的图片和标签。

import matplotlib.pyplot as plt
import numpy as np
 
# functions to show an image
def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()
 
 
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
 
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join(f'{classes[labels[j]]:5s}' for j in range(batch_size)))

但是如果你就这样将代码copy+paste在pycharm中直接接续在载入数据的代码下面点击“运行”,有可能得到的是一个RuntimeError,并建议你按照惯例设置if __name__ == '__main__':

所以,我建议将目前为止的代码优化成下面的样子:

import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader  # 如果torch.utils.data.DataLoader()有报错提示“在 '__init__.py' 中找不到引用 'data'则增加此语句或者其他语句 ”
import matplotlib.pyplot as plt
import numpy as np
# ①←后续如果继续导入packages,请直接在这里插入代码
 
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
 
batch_size = 4
 
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2)
 
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)
 
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
 
def imshow(img):
    """显示图像的函数"""
    img = img / 2 + 0.5  # 去归一化
    npimg = img.numpy()
    # 上面transform.ToTensor()操作后数据编程CHW[通道靠前模式],需要转换成HWC[通道靠后模式]才能plt.imshow()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))  # 转置前将排在第0位的Channel(C)放在最后,所以是(1,2,0)
    plt.show()
 
# ②←后续再有定义class、function等在此插入代码编写
 
if __name__ == '__main__':
    # 随机输出一个mini-batch的图像
    dataiter_tr = iter(trainloader)  # 取一个batch的训练集数据
    # images_tr, labels_tr = dataiter_tr.next() 根据你的python选择迭代器调用语句
    images_tr, labels_tr = next(dataiter_tr)  # 切分数据和标签
 
    imshow(torchvision.utils.make_grid(images_tr))  # 生成网格图
    print(' '.join(f'{classes[labels_tr[j]]:5s}' for j in range(batch_size)))  # 打印标签值
    # print(' '.join('%5s' % classes[labels_tr[j]] for j in range(batch_size))) 如果你使用python3.6之前的版本,那么有可能无法使用f字符串语句,只能使用.format()方法
 
# ③←后续的程序执行语句在此插入

输出图像示例:

随机输出一个mini-batch的训练集图像

标签输出:bird cat deer ship

2.2 定义一个卷积神经网络

可以将之前写过的识别手写数字MNIST的神经网络迁移到这里来。

# 在①后插入import代码
import torch.nn as nn
import torch.nn.functional as F
 
# 在②后插入神经网络定义代码
class Net(nn.Module):
    """定义一个卷积神经网络及前馈函数"""
 
    def __init__(self):
        """初始化网络:定义卷积层、池化层和全链接层"""
 
        super().__init__()  # 继承父类属性。P.S. 如果看到super(Net, self).__init__()写法亦可
        self.conv1 = nn.Conv2d(3, 6, 5)  # 使用2套卷积核。输入(B×3×32×32),输出(B×6×28×28)
        self.pool = nn.MaxPool2d(2, 2)  # 最大池化操作,输出时高、宽减半,(B×6×14×14)  (B×16×5×5)
        self.conv2 = nn.Conv2d(6, 16, 5)  # 使用4套卷积核,卷积核大小为5×5。(B×16×10×10)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 全链接层。将数据扁平化成一维,共400个输入,120个输出
        self.fc2 = nn.Linear(120, 84)  # 全链接层。120个输入,84个输出
        self.fc3 = nn.Linear(84, 10)  # 全链接层。84个输入,10个输出用于分类
 
    def forward(self, x):
        """前馈函数,规定数据正向传播的规则"""
 
        x = self.pool(F.relu(self.conv1(x)))  # 输入 > conv1卷积 > ReLu激活 > maxpool最大池化
        x = self.pool(F.relu(self.conv2(x)))  # > conv2卷积 > ReLu激活 > maxpool最大池化
        # x = torch.flatten(x, 1)  # 如果你不喜欢下一种写法实现扁平化,可以使用这条语句代替
        x = x.view(-1, 16 * 5 * 5)  # 相当于numpy的reshape。此处是将输入数据变换成不固定行数,因此第一个参数是-1,完成扁平化
        x = F.relu(self.fc1(x))  # 扁平化数据 > fc1全链接层 > ReLu激活
        x = F.relu(self.fc2(x))  # > fc2全链接层 > ReLu激活
        x = self.fc3(x)  # > fc3全链接层 > 输出
        return x
 
# 在③后插入神经网络实例化代码
net = Net()  # 实例化神经网络

2.3 定义损失函数和优化器

我们使用多分类交叉熵损失函数(Classification Cross-Entropy loss)[4]和随机梯度下降法(SGD)的动量改进版(momentum)[5][6]

# 在①后插入import代码
import torch.optim as optim
 
# 在③后插入代码
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

这里必须做一个扩展。

在2.2中我们可以看到神经网络中,每个层的输出都经过了激活函数的激活作用。但是在输出层后却缺少了激活函数而貌似“直接作用了损失函数”。

简单地说,原因就在于torch.nn.CrossEntropyLoss()将nn.LogSoftmax()激活函数和nn.NLLLoss()负对数似然损失函数集成在一起。

logsoftmax是argmax => softargmax => softmax => logsoftmax逐步优化的求极大值的index的期望的方法。负对数似然损失函数(Negtive Log Likehood)就是计算最小化真实分布 P(y|x) 与模型输出分布 P(y^|x) 的距离,等价于最小化两者的交叉熵。实际使用函数时,是one-hot编码后的标签与logsoftmax结果相乘再求均值再取反,这个过程博主“不愿透漏姓名的王建森”在他的博客中做过实验[7]讲解。

上述结论的详尽说明请参考知乎上Cassie的创作《吃透torch.nn.CrossEntropyLoss()》[8]、知乎上Gordon Lee的创作《交叉熵和极大似然估计的再理解》[9]

P.S. 对于torch.nn.CrossEntropyLoss()的官网Doc中提到的"This is particularly useful when you have an unbalanced training set."关于如何处理不均衡样品的几个解决办法,可以参考Quora上的问答《In classification, how do you handle an unbalanced training set?》[10]以及热心网友对此问答的翻译[11]

2.4 训练神经网络

事情变得有趣起来了!我们只需要遍历我们的迭代器,将其输入进神经网络和优化器即可。

如果想在GPU上训练请参考文章开头给出的【学习源】链接中的末尾部分有教授如何修改代码的部分。

--snip--
 
# 在③后插入代码
    for epoch in range(5):  # 数据被遍历的次数
 
        running_loss = 0.0  # 每次遍历前重新初始化loss值
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data  # 切分数据集
 
            optimizer.zero_grad()  # 梯度清零,避免上一个batch迭代的影响
 
            # 前向传递 + 反向传递 + 权重优化
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
 
            # 输出日志
            running_loss += loss.item()  # Tensor.item()方法是将tensor的值转化成python number
            if i % 2000 == 1999:  # 每2000个mini batches输出一次
                # print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))  如果python3.6之前版本可以使用这个代码
                print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
                running_loss = 0.0
 
    print('Finished Training')
Out:
model will be trained on device: 'cuda:0'
某一次输出结果日志整理一下如下表:

Finished Training

将loss数据整理并画图(选做):

--snip--
 
x = np.linspace(2000, 12000, 6, dtype=np.int32)
# 数据每次训练输出都不一样,给出画图代码,至于数据,大家寄几填吧~
epoch_01 = np.array([...])
epoch_02 = np.array([...])
epoch_03 = np.array([...])
epoch_04 = np.array([...])
epoch_05 = np.array([...])
 
plt.plot(x, epoch_01, 'ro-.', x, epoch_02, 'bo-.', x, epoch_03, 'yo-.', x, epoch_04, 'ko-.', x, epoch_05, 'go-.')
plt.legend(['Epoch_1', 'Epoch_2', 'Epoch_3', 'Epoch_4', 'Epoch_5'])
plt.xlabel('number of mini-batches')
plt.ylabel('loss')
plt.title('Loss during CIFAR-10 training procedure in Convolution Neural Networks')
plt.show()

通过数据我们可以看出loss的下降趋势:

  • 第一个epoch的最明显
  • 第二个epoch继续降低,但趋势更平缓
  • 后三个epoch在开始较前一个epoch有较明显下降,但下降幅度递减
  • *后三个epoch在该epoch内下降趋势平缓,或出现小幅震荡并保持低于前一个epoch

现在我们可以快速保存训练完成的模型到指定的路径。

--snip--
 
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
保存的文件

2.5 测试神经网络

我们已经用训练集数据将神经网络训练了5次(epoches=5)。但我们还需要核实神经网络是否真的学到了什么。
我们将以神经网络预测的类别标签和真实标签进行对比核实。如果预测正确,则将样本添加到正确预测列表中。
首先我们像查看训练集的一个mini batch图像一样,看一下一部分测试集图像。

--snip--
 
    dataiter_te = iter(testloader)
    images_te, labels_te = next(dataiter_te)  # 另一种备用写法参考训练集部分
    imshow(torchvision.utils.make_grid(images_te))
    print('GroundTruth: ', ' '.join('%5s' % classes[labels_te[j]] for j in range(batch_size)))  # 另一种备用写法参考训练集部分

随机输出一个mini-batch的测试集图像

Out:
GroundTruth: cat ship ship plane

下面,我们载入之前保存的模型(注:保存和再载入模型不是必要步骤,这里这么做是为了演示这些操作):

--snip--
 
net = Net()
net.load_state_dict(torch.load(PATH))

OK,现在让我们看看神经网络如何看待这些图像的分类的:

--snip--
 
outputs = net(images)  # 看一下神经网络对上述展示图片的预测结果

输出的是10个分类的“能量(energy)”。某个分类的能量越高,意味着神经网络认为该图像越符合该分类。因此我们可以获得那个能量的索引。

--snip--
 
    _, predicted = torch.max(outputs, 1)  # torch.max(input, dim)返回按照dim方向的最大值和其索引
    print('Predicted: ', ' '.join(f'{classes[predicted[j]]:5s}' for j in range(batch_size)))
Out:
Predicted: cat ship ship ship

看起来不错。下面就试一试在全部测试集上的表现:

    correct = 0
    total = 0
    # 由于这不是在训练模型,因此对输出不需要计算梯度等反向传播过程
    with torch.no_grad():
        for data in testloader:
            images_pre, labels_pre = data
            outputs = net(images_pre)  # 数据传入神经网络,计算输出
            _, predicted = torch.max(outputs.data, 1)  # 获取最大能量的索引
            total += labels_pre.size(0)  # 计算预测次数
            correct += (predicted == labels_pre).sum().item()  # 计算正确预测次数
 
    print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
Out:
Accuracy of the network on the 10000 test images: 61 %

感觉预测的准确率比随机从10个类中蒙一个类(概率10%)要高,看来神经网络确实学到了一些东西。

当然,我们还可以看一下对于不同的类的学习效果:

--snip--
 
# 生成两个dict,分别用来存放预测正确数量和总数量的个数
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}
 
# 启动预测过程,无需计算梯度等
with torch.no_grad():
    for data in testloader:
        images_cl, labels_cl = data
        outputs = net(images_cl)
        _, predictions = torch.max(outputs, 1)
        # 开始计数
        for label, prediction in zip(labels_cl, predictions):
            if label == prediction:
                correct_pred[classes[label]] += 1
            total_pred[classes[label]] += 1
 
# 分类别打印预测准确率
for classname, correct_count in correct_pred.items():
    accuracy = 100 * float(correct_count) / total_pred[classname]
    print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')
Out:
Accuracy for class: plane is 66.2 %
Accuracy for class: car is 80.7 %
Accuracy for class: bird is 39.1 %
Accuracy for class: cat is 53.4 %
Accuracy for class: deer is 64.6 %
Accuracy for class: dog is 35.8 %
Accuracy for class: frog is 67.9 %
Accuracy for class: horse is 69.5 %
Accuracy for class: ship is 75.0 %
Accuracy for class: truck is 65.5 %

至此,我们完成了练习!
在结束前,让我们反思一下准确率为何会呈现上述样子,我推测:

  • 数据集本身缺陷,如图片太小(32×32)不足以让卷积神经网络提取到足够特征,类别划分不合理(汽车&卡车,以及飞机&鸟等较其他类别而言是否太过相似),各类别图像数量和图像本身质量等
  • 数据的预处理不足,预处理阶段对数据的增强不够,是否可以加入旋转/镜像/透视、裁剪、亮度调节、噪声/平滑等处理
  • 神经网络本身的结构、参数设置等是否合理,如卷积/全链接层数的规定、卷积核相关的定义、损失函数的选择、batch size/epoch的平衡等(希望可以通过学习后续的Alexnet、VGG、Resnet、FastRCNN、YOLO等受到启发)
  • 避免偶然。不能以单次的结果去评价,评价应当建立在若干次重复试验的基础上

本文翻译至:​​​​​​Training a Classifier — PyTorch Tutorials 2.6.0+cu124 documentation

参考

  1. pytorch的transform中ToTensor接着Normalize http://t.csdn.cn/bCDSU
  2. pytorch中归一化transforms.Normalize的真正计算过程 - Transformer的文章 - 知乎  https://zhuanlan.zhihu.com/p/414242338
  3. 标准化/归一化的目的和作用 - JMD的文章 - 知乎  https://zhuanlan.zhihu.com/p/465264729
  4. Doc--torch.nn.CrossEntropyLoss CrossEntropyLoss — PyTorch 2.6 documentation
  5. Doc-torch.optim.SGD SGD — PyTorch 2.6 documentation
  6. 深度学习中常用优化器的总结 - Alex Chung的文章 - 知乎  https://zhuanlan.zhihu.com/p/166362509
  7. ^交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数 交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数 - 不愿透漏姓名的王建森 - 博客园
  8. ^吃透torch.nn.CrossEntropyLoss() - Cassie的文章 - 知乎  https://zhuanlan.zhihu.com/p/159477597
  9. 交叉熵和极大似然估计的再理解 - Gordon Lee的文章 - 知乎  https://zhuanlan.zhihu.com/p/165139520
  10. In classification, how do you handle an unbalanced training set? https://www.quora.com/In-classification-how-do-you-handle-an-unbalanced-training-set
  11. 如何处理训练样本不均衡的问题 http://t.csdn.cn/FDVYJ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291831.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

S4 HANA明确税金汇差科目(OBYY)

本文主要介绍在S4 HANA OP中明确税金汇差科目(OBYY)相关设置。具体请参照如下内容: 1. 明确税金汇差科目(OBYY) 以上配置点定义了在外币挂账时,当凭证抬头汇率和税金行项目汇率不一致时,造成的差异金额进入哪个科目。此类情况只发生在FB60/F…

深入理解linux中的文件(上)

1.前置知识: (1)文章 内容 属性 (2)访问文件之前,都必须打开它(打开文件,等价于把文件加载到内存中) 如果不打开文件,文件就在磁盘中 (3&am…

Airflow:深入理解Apache Airflow Task

Apache Airflow是一个开源工作流管理平台,支持以编程方式编写、调度和监控工作流。由于其灵活性、可扩展性和强大的社区支持,它已迅速成为编排复杂数据管道的首选工具。在这篇博文中,我们将深入研究Apache Airflow 中的任务概念,探…

93,【1】buuctf web [网鼎杯 2020 朱雀组]phpweb

进入靶场 页面一直在刷新 在 PHP 中,date() 函数是一个非常常用的处理日期和时间的函数,所以应该用到了 再看看警告的那句话 Warning: date(): It is not safe to rely on the systems timezone settings. You are *required* to use the date.timez…

ChatGPT怎么回事?

纯属发现,调侃一下~ 这段时间deepseek不是特别火吗,尤其是它的推理功能,突发奇想,想用deepseek回答一些问题,回答一个问题之后就回复服务器繁忙(估计还在被攻击吧~_~) 然后就转向了GPT&#xf…

本地部署DeepSeek教程(Mac版本)

第一步、下载 Ollama 官网地址:Ollama 点击 Download 下载 我这里是 macOS 环境 以 macOS 环境为主 下载完成后是一个压缩包,双击解压之后移到应用程序: 打开后会提示你到命令行中运行一下命令,附上截图: 若遇…

2月3日星期一今日早报简报微语报早读

2月3日星期一,农历正月初六,早报#微语早读。 1、多个景区发布公告:售票数量已达上限,请游客合理安排行程; 2、2025春节档总票房破70亿,《哪吒之魔童闹海》破31亿; 3、美宣布对中国商品加征10…

WPF进阶 | WPF 动画特效揭秘:实现炫酷的界面交互效果

WPF进阶 | WPF 动画特效揭秘:实现炫酷的界面交互效果 前言一、WPF 动画基础概念1.1 什么是 WPF 动画1.2 动画的基本类型1.3 动画的核心元素 二、线性动画详解2.1 DoubleAnimation 的使用2.2 ColorAnimation 实现颜色渐变 三、关键帧动画深入3.1 DoubleAnimationUsin…

DeepSeek 遭 DDoS 攻击背后:DDoS 攻击的 “千层套路” 与安全防御 “金钟罩”

当算力博弈升级为网络战争:拆解DDoS攻击背后的技术攻防战——从DeepSeek遇袭看全球网络安全新趋势 在数字化浪潮席卷全球的当下,网络已然成为人类社会运转的关键基础设施,深刻融入经济、生活、政务等各个领域。从金融交易的实时清算&#xf…

本地部署DeepSeek-R1模型(新手保姆教程)

背景 最近deepseek太火了,无数的媒体都在报道,很多人争相着想本地部署试验一下。本文就简单教学一下,怎么本地部署。 首先大家要知道,使用deepseek有三种方式: 1.网页端或者是手机app直接使用 2.使用代码调用API …

DRM系列七:Drm之CREATE_DUMB

本系列文章基于linux 5.15 DRM驱动的显存由GEM(Graphics execution management)管理。 一、创建流程 创建buf时,user层提供需要buf的width,height以及bpp(bite per pixel),然后调用drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &…

二叉树——429,515,116

今天继续做关于二叉树层序遍历的相关题目,一共有三道题,思路都借鉴于最基础的二叉树的层序遍历。 LeetCode429.N叉树的层序遍历 这道题不再是二叉树了,变成了N叉树,也就是该树每一个节点的子节点数量不确定,可能为2&a…

使用mybatisPlus插件生成代码步骤及注意事项

使用mybatisPlus插件可以很方便的生成与数据库对应的PO对象,以及对应的controller、service、ImplService、mapper代码,生成这种代码的方式有很多,包括mybatis-plus提供的代码生成器,以及idea提供的代码生成器,无论哪一…

SmartPipe完成新一轮核心算法升级

1. 增加对低质量轴段的修正 由于三维图纸导出造成某些轴段精度较差,部分管路段的轴线段不满足G1连续,SmartPipe采用算法对这种情况进行了修正,保证轴段在一定精度范围内光滑连续。 2. 优化对中文路径的处理 SmartPipeBatch批处理版本优化…

松灵机器人 scout ros2 驱动 安装

必须使用 ubuntu22 必须使用 链接的humble版本 #打开can 口 sudo modprobe gs_usbsudo ip link set can0 up type can bitrate 500000sudo ip link set can0 up type can bitrate 500000sudo apt install can-utilscandump can0mkdir -p ~/ros2_ws/srccd ~/ros2_ws/src git cl…

路径规划之启发式算法之二十九:鸽群算法(Pigeon-inspired Optimization, PIO)

鸽群算法(Pigeon-inspired Optimization, PIO)是一种基于自然界中鸽子群体行为的智能优化算法,由Duan等人于2014年提出。该算法模拟了鸽子在飞行过程中利用地标、太阳和磁场等导航机制的行为,具有简单、高效和易于实现的特点,适用于解决连续优化问题。 更多的仿生群体算法…

【leetcode练习·二叉树拓展】快速排序详解及应用

本文参考labuladong算法笔记[拓展:快速排序详解及应用 | labuladong 的算法笔记] 1、算法思路 首先我们看一下快速排序的代码框架: def sort(nums: List[int], lo: int, hi: int):if lo > hi:return# 对 nums[lo..hi] 进行切分# 使得 nums[lo..p-1]…

华为IoTDA平台两个设备之间通信的过滤条件如何设置

目录 引言 过滤规则 特定topic转发 特定设备转发 特定产品转发 特定数据转发 结语 参考资料 引言 前一篇博文介绍了如何在两个设备之间进行通信转发。和利用topic进行转发相比,华为的这种方法比较麻烦,但是它功能比较强,包括可以利用…

Docker 安装详细教程(适用于CentOS 7 系统)

目录 步骤如下: 1. 卸载旧版 Docker 2. 配置 Docker 的 YUM 仓库 3. 安装 Docker 4. 启动 Docker 并验证安装 5. 配置 Docker 镜像加速 总结 前言 Docker 分为 CE 和 EE 两大版本。CE即社区版(免费,支持周期7个月)&#xf…