Python NumPy(10):NumPy 统计函数

news2025/2/1 20:41:52

1 NumPy 统计函数

        NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。

1.1 numpy.amin() 和 numpy.amax()

        numpy.amin() 用于计算数组中的元素沿指定轴的最小值。

numpy.amin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
  • a: 输入的数组,可以是一个NumPy数组或类似数组的对象。
  • axis: 可选参数,用于指定在哪个轴上计算最小值。如果不提供此参数,则返回整个数组的最小值。可以是一个整数表示轴的索引,也可以是一个元组表示多个轴。
  • out: 可选参数,用于指定结果的存储位置。
  • keepdims: 可选参数,如果为True,将保持结果数组的维度数目与输入数组相同。如果为False(默认值),则会去除计算后维度为1的轴。
  • initial: 可选参数,用于指定一个初始值,然后在数组的元素上计算最小值。
  • where: 可选参数,一个布尔数组,用于指定仅考虑满足条件的元素。

        numpy.amax() 用于计算数组中的元素沿指定轴的最大值。

numpy.amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
  • a: 输入的数组,可以是一个NumPy数组或类似数组的对象。
  • axis: 可选参数,用于指定在哪个轴上计算最大值。如果不提供此参数,则返回整个数组的最大值。可以是一个整数表示轴的索引,也可以是一个元组表示多个轴。
  • out: 可选参数,用于指定结果的存储位置。
  • keepdims: 可选参数,如果为True,将保持结果数组的维度数目与输入数组相同。如果为False(默认值),则会去除计算后维度为1的轴。
  • initial: 可选参数,用于指定一个初始值,然后在数组的元素上计算最大值。
  • where: 可选参数,一个布尔数组,用于指定仅考虑满足条件的元素。
import numpy as np

a = np.array([[3, 7, 5], [8, 4, 3], [2, 4, 9]])
print('我们的数组是:')
print(a)
print('\n')
print('调用 amin() 函数:')
print(np.amin(a, 1))
print('\n')
print('再次调用 amin() 函数:')
print(np.amin(a, 0))
print('\n')
print('调用 amax() 函数:')
print(np.amax(a))
print('\n')
print('再次调用 amax() 函数:')
print(np.amax(a, axis=0))

1.2 numpy.ptp()

        numpy.ptp() 函数计算数组中元素最大值与最小值的差(最大值 - 最小值)。

numpy.ptp(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
  • a: 输入的数组,可以是一个 NumPy 数组或类似数组的对象。
  • axis: 可选参数,用于指定在哪个轴上计算峰-峰值。如果不提供此参数,则返回整个数组的峰-峰值。可以是一个整数表示轴的索引,也可以是一个元组表示多个轴。
  • out: 可选参数,用于指定结果的存储位置。
  • keepdims: 可选参数,如果为 True,将保持结果数组的维度数目与输入数组相同。如果为 False(默认值),则会去除计算后维度为1的轴。
  • initial: 可选参数,用于指定一个初始值,然后在数组的元素上计算峰-峰值。
  • where: 可选参数,一个布尔数组,用于指定仅考虑满足条件的元素。
import numpy as np

a = np.array([[3, 7, 5], [8, 4, 3], [2, 4, 9]])
print('我们的数组是:')
print(a)
print('\n')
print('调用 ptp() 函数:')
print(np.ptp(a))
print('\n')
print('沿轴 1 调用 ptp() 函数:')
print(np.ptp(a, axis=1))
print('\n')
print('沿轴 0 调用 ptp() 函数:')
print(np.ptp(a, axis=0))

1.3 numpy.percentile()

        百分位数是统计中使用的度量,表示小于这个值的观察值的百分比。 函数numpy.percentile()接受以下参数。

numpy.percentile(a, q, axis)
  • a: 输入数组
  • q: 要计算的百分位数,在 0 ~ 100 之间
  • axis: 沿着它计算百分位数的轴

        第 p 个百分位数是这样一个值,它使得至少有 p% 的数据项小于或等于这个值,且至少有 (100-p)% 的数据项大于或等于这个值。举个例子:高等院校的入学考试成绩经常以百分位数的形式报告。比如,假设某个考生在入学考试中的语文部分的原始分数为 54 分。相对于参加同一考试的其他学生来说,他的成绩如何并不容易知道。但是如果原始分数54分恰好对应的是第70百分位数,我们就能知道大约70%的学生的考分比他低,而约30%的学生考分比他高。这里的 p = 70。

import numpy as np

a = np.array([[10, 7, 4], [3, 2, 1]])
print('我们的数组是:')
print(a)

print('调用 percentile() 函数:')
# 50% 的分位数,就是 a 里排序之后的中位数
print(np.percentile(a, 50))

# axis 为 0,在纵列上求
print(np.percentile(a, 50, axis=0))

# axis 为 1,在横行上求
print(np.percentile(a, 50, axis=1))

# 保持维度不变
print(np.percentile(a, 50, axis=1, keepdims=True))

1.4 numpy.median()

        numpy.median() 函数用于计算数组 a 中元素的中位数(中值)

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=<no value>)
  • a: 输入的数组,可以是一个 NumPy 数组或类似数组的对象。
  • axis: 可选参数,用于指定在哪个轴上计算中位数。如果不提供此参数,则计算整个数组的中位数。可以是一个整数表示轴的索引,也可以是一个元组表示多个轴。
  • out: 可选参数,用于指定结果的存储位置。
  • overwrite_input: 可选参数,如果为True,则允许在计算中使用输入数组的内存。这可能会在某些情况下提高性能,但可能会修改输入数组的内容。
  • keepdims: 可选参数,如果为True,将保持结果数组的维度数目与输入数组相同。如果为False(默认值),则会去除计算后维度为1的轴。
import numpy as np

a = np.array([[30, 65, 70], [80, 95, 10], [50, 90, 60]])
print('我们的数组是:')
print(a)
print('\n')
print('调用 median() 函数:')
print(np.median(a))
print('\n')
print('沿轴 0 调用 median() 函数:')
print(np.median(a, axis=0))
print('\n')
print('沿轴 1 调用 median() 函数:')
print(np.median(a, axis=1))

1.5 numpy.mean()

        numpy.mean() 函数返回数组中元素的算术平均值,如果提供了轴,则沿其计算。算术平均值是沿轴的元素的总和除以元素的数量。

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>)
  • a: 输入的数组,可以是一个 NumPy 数组或类似数组的对象。
  • axis: 可选参数,用于指定在哪个轴上计算平均值。如果不提供此参数,则计算整个数组的平均值。可以是一个整数表示轴的索引,也可以是一个元组表示多个轴。
  • dtype: 可选参数,用于指定输出的数据类型。如果不提供,则根据输入数据的类型选择合适的数据类型。
  • out: 可选参数,用于指定结果的存储位置。
  • keepdims: 可选参数,如果为True,将保持结果数组的维度数目与输入数组相同。如果为False(默认值),则会去除计算后维度为1的轴。
import numpy as np

a = np.array([[1, 2, 3], [3, 4, 5], [4, 5, 6]])
print('我们的数组是:')
print(a)
print('\n')
print('调用 mean() 函数:')
print(np.mean(a))
print('\n')
print('沿轴 0 调用 mean() 函数:')
print(np.mean(a, axis=0))
print('\n')
print('沿轴 1 调用 mean() 函数:')
print(np.mean(a, axis=1))

1.6 numpy.average()

        numpy.average() 函数根据在另一个数组中给出的各自的权重计算数组中元素的加权平均值。该函数可以接受一个轴参数。 如果没有指定轴,则数组会被展开。加权平均值即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。考虑数组[1,2,3,4]和相应的权重[4,3,2,1],通过将相应元素的乘积相加,并将和除以权重的和,来计算加权平均值。

加权平均值 = (1*4+2*3+3*2+4*1)/(4+3+2+1)
numpy.average(a, axis=None, weights=None, returned=False)
  • a: 输入的数组,可以是一个 NumPy 数组或类似数组的对象。
  • axis: 可选参数,用于指定在哪个轴上计算加权平均值。如果不提供此参数,则计算整个数组的加权平均值。可以是一个整数表示轴的索引,也可以是一个元组表示多个轴。
  • weights: 可选参数,用于指定对应数据点的权重。如果不提供权重数组,则默认为等权重。
  • returned: 可选参数,如果为True,将同时返回加权平均值和权重总和。
import numpy as np

a = np.array([1, 2, 3, 4])
print('我们的数组是:')
print(a)
print('\n')
print('调用 average() 函数:')
print(np.average(a))
print('\n')
# 不指定权重时相当于 mean 函数
wts = np.array([4, 3, 2, 1])
print('再次调用 average() 函数:')
print(np.average(a, weights=wts))
print('\n')
# 如果 returned 参数设为 true,则返回权重的和
print('权重的和:')
print(np.average([1, 2, 3, 4], weights=[4, 3, 2, 1], returned=True))

        在多维数组中,可以指定用于计算的轴。

import numpy as np

a = np.arange(6).reshape(3, 2)
print('我们的数组是:')
print(a)
print('\n')
print('修改后的数组:')
wt = np.array([3, 5])
print(np.average(a, axis=1, weights=wt))
print('\n')
print('修改后的数组:')
print(np.average(a, axis=1, weights=wt, returned=True))

1.7 标准差

        标准差是一组数据平均值分散程度的一种度量,标准差是方差的算术平方根。公式如下:

std = sqrt(mean((x - x.mean())**2))

        如果数组是 [1,2,3,4],则其平均值为 2.5。 因此,差的平方是 [2.25,0.25,0.25,2.25],并且再求其平均值的平方根除以 4,即 sqrt(5/4) ,结果为 1.1180339887498949。

import numpy as np

print(np.std([1, 2, 3, 4]))

1.8 方差

        统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数,即 mean((x - x.mean())** 2)。换句话说,标准差是方差的平方根。

import numpy as np

print(np.var([1, 2, 3, 4]))

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2289452.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[Spring] Gateway详解

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…

TCP三次握手和四次挥手面试题

TCP标志位TCP序列号、确认号三次握手 三次握手过程为什么不是两次握手&#xff1f;为什么不是四次握手&#xff1f; 为什么超时重传&#xff1f;如何处理丢包 为什么需要超时重传?如何处理丢包&#xff1f; 四次挥手 四次挥手过程为什么需要四次挥手为什么四次挥手&#xff0c…

使用openAI与Deepseek的感受

今天简单介绍下使用OpenAI和DeepSeek的感觉&#xff0c;有些地方可能存在不准确的地方&#xff0c;望指正&#xff1a; 从2023年的秋冬到现在2025年的1月间&#xff0c;OpenAI和DeepSeek我都用它们来帮我&#xff0c;当然更多的是OpenAI&#xff0c;但整体感受如下&#xff1a;…

FFmpeg(7.1版本)在Ubuntu18.04上的编译

一、从官网上下载FFmpeg源码 官网地址&#xff1a;Download FFmpeg 点击Download Source Code 下载源码到本地电脑上 二、解压包 tar -xvf ffmpeg-7.1.tar.xz 三、配置configure 1.准备工作 安装编译支持的软件 ① sudo apt-get install nasm //常用的汇编器&#xff0c;…

为AI聊天工具添加一个知识系统 之80 详细设计之21 符号逻辑 之1

本文要点 要点 前面我们讨论了本项目中的正则表达式。现在我们将前面讨论的正则表达式视为狭义的符号文本及其符号规则rule&#xff08;认识的原则--认识上认识对象的约束&#xff09;&#xff0c;进而在更广泛的视角下将其视为符号逻辑及其符号原则principle&#xff08;知识…

【C++】类和对象(5)

目录 一、构造函数补充1、初始化列表 二、类型转换三、static成员四、友元1、友元函数2、友元类 五、内部类六、匿名对象 一、构造函数补充 对于之前讲解的构造函数&#xff0c;还有一些更深层次的内容要进行补充&#xff0c;接下来进行补充内容的讲解。 1、初始化列表 在我…

FPGA|使用quartus II通过AS下载POF固件

1、将开发板设置到AS下载挡位&#xff0c;或者把下载线插入到AS端口 2、打开quartus II&#xff0c;选择Tools→Programmer→ Mode选择Active Serial Programming 3、点击左侧Add file…&#xff0c;选择 .pof 文件 →start 4、勾选program和verify&#xff08;可选&#xff0…

27.Word:财务软件应用的书稿【10】

目录 NO1.2 NO3 NO5.6​ NO7.8​ NO9​ 存在页码链接关系&#xff0c;只是页码格式不同 NO1.2 另存为/F12&#xff1a;考生文件夹布局→页面设置对话框→页边距&#xff1a;上下内外/装订线→纸张大小→布局&#xff1a;页眉页脚 NO3 样式的应用&#xff1a;超快速❗ 开…

AI编程:如何编写提示词

这是小卷对AI编程工具学习的第2篇文章&#xff0c;今天讲讲如何编写AI编程的提示词&#xff0c;并结合实际功能需求案例来进行开发 1.编写提示词的技巧 好的提示词应该是&#xff1a;目标清晰明确&#xff0c;具有针对性&#xff0c;能引导模型理解问题 下面是两条提示词的对…

记一次STM32编译生成BIN文件过大的问题(基于STM32CubeIDE)

文章目录 问题描述解决方法更多拓展 问题描述 最近在一个项目中使用了 STM32H743 单片机&#xff08;基于 STM32CubeIDE GCC 开发&#xff09;&#xff0c;它的内存分为了 DTCMRAM RAM_D1 RAM_D2 …等很多部分。其中 DTCM 的速度是比通常的内存要快的&#xff0c;缺点是不支持…

DeepSeek本地版安装简易教程(windows)

第一步&#xff1a;下载 第二步&#xff1a;安装 先安装ollama&#xff0c;安装完毕保持ollama运行&#xff0c;设置ollama通过防火墙&#xff0c;再安装deepseek&#xff0c;7b代表下载的r1版本&#xff0c;版本越高消耗资源越大 第三步&#xff1a;开放windows防火墙 第四步…

RK3568使用QT搭建TCP服务器和客户端

文章目录 一、让RK3568开发板先连接上wifi二、客户端代码1. `widget.h` 文件2. `widget.cpp` 文件**详细讲解**1. **`Widget` 类构造函数 (`Widget::Widget`)**2. **UI 布局 (`setupUI`)**3. **连接按钮的槽函数 (`onConnectClicked`)**4. **发送消息按钮的槽函数 (`onSendMess…

Python爬虫之——Cookie存储器

目录 专栏导读1、背景介绍2、库的安装3、核心代码4、完整代码总结 专栏导读 &#x1f338; 欢迎来到Python办公自动化专栏—Python处理办公问题&#xff0c;解放您的双手 &#x1f3f3;️‍&#x1f308; 博客主页&#xff1a;请点击——> 一晌小贪欢的博客主页求关注 &…

蓝桥杯刷题DAY1:前缀和

所谓刷题&#xff0c;讲究的就是细心 帕鲁服务器崩坏【算法赛】 “那个帕鲁我已经观察你很久了&#xff0c;我对你是有些失望的&#xff0c;进了这个营地&#xff0c;不是把事情做好就可以的&#xff0c;你需要有体系化思考的能力。” 《幻兽帕鲁》火遍全网&#xff0c;成为…

Hive:窗口函数(1)

窗口函数 窗口函数OVER()用于定义一个窗口&#xff0c;该窗口指定了函数应用的数据范围 对窗口数据进行分区 partition by 必须和over () 一起使用, distribute by经常和sort by 一起使用,可以不和over() 一起使用.DISTRIBUTE BY决定了数据如何分布到不同的Reducer上&#xf…

OpenCV:SIFT关键点检测与描述子计算

目录 1. 什么是 SIFT&#xff1f; 2. SIFT 的核心步骤 2.1 尺度空间构建 2.2 关键点检测与精细化 2.3 方向分配 2.4 计算特征描述子 3. OpenCV SIFT API 介绍 3.1 cv2.SIFT_create() 3.2 sift.detect() 3.3 sift.compute() 3.4 sift.detectAndCompute() 4. SIFT 关…

爬虫基础(一)HTTP协议 :请求与响应

前言 爬虫需要基础知识&#xff0c;HTTP协议只是个开始&#xff0c;除此之外还有很多&#xff0c;我们慢慢来记录。 今天的HTTP协议&#xff0c;会有助于我们更好的了解网络。 一、什么是HTTP协议 &#xff08;1&#xff09;定义 HTTP&#xff08;超文本传输协议&#xff…

【4Day创客实践入门教程】Day1 工具箱构建——开发环境的构建

Day1 工具箱构建——开发环境的构建 目录 Day1 工具箱构建——开发环境的构建1.元件选型2.准备工具3. 开发板准备焊接排针具体步骤注意事项与技巧 4. 软件环境配置与固件烧录Thonny IDE软件环境配置配置Micropython环境与烧录固件**问题&#xff1a;**买的是4M/16M&#xff0c;…

如何让一个用户具备创建审批流程的权限

最近碰到一个问题&#xff0c;两个sandbox&#xff0c;照理用户的权限应该是一样的&#xff0c;结果开发环境里面我可以左右的做各种管理工作&#xff0c;但是使用change set上传后&#xff0c;另一个环境的同一个用户&#xff0c;没有相对于的权限&#xff0c;权限不足。 当时…

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操 Janus-Pro-7B介绍 Janus-Pro-7B 是由 DeepSeek 开发的多模态 AI 模型&#xff0c;它在理解和生成方面取得了显著的进步。这意味着它不仅可以处理文本&#xff0c;还可以处理图像等其他模态的信息。 模型主要特点:Permalink…