本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操

news2025/3/6 5:32:22

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操

Janus-Pro-7B介绍

Janus-Pro-7B 是由 DeepSeek 开发的多模态 AI 模型,它在理解和生成方面取得了显著的进步。这意味着它不仅可以处理文本,还可以处理图像等其他模态的信息。
模型主要特点:Permalink
统一的架构: Janus-Pro 采用单一 transformer 架构来处理文本和图像信息,实现了真正的多模态理解和生成。
解耦的视觉编码: 为了更好地平衡理解和生成任务,Janus-Pro 将视觉编码解耦为独立的路径,提高了模型的灵活性和性能。
强大的性能: 在多个基准测试中,Janus-Pro 的性能超越了之前的统一模型,甚至可以与特定任务的模型相媲美。
开源: Janus-Pro-7B 是开源的,这意味着研究人员和开发者可以自由地访问和使用它,推动 AI 领域的创新。
具体来说,Janus-Pro-7B 有以下优势:

图像理解: 能够准确地识别和理解图像中的对象、场景和关系。
图像生成: 可以根据文本描述生成高质量的图像,甚至可以进行图像编辑和转换。
文本生成: 可以生成流畅、连贯的文本,例如故事、诗歌、代码等。
多模态推理: 可以结合文本和图像信息进行推理,例如根据图像内容回答问题,或者根据文本描述生成图像。
与其他模型的比较:
超越 DALL-E 3 和 Stable Diffusion: 在 GenEval 和 DPG-Bench 等基准测试中,Janus-Pro-7B 的性能优于 OpenAI 的 DALL-E 3 和 Stability AI 的 Stable Diffusion。
基于 DeepSeek-LLM: Janus-Pro 建立在 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 的基础上,并对其进行了多模态扩展。
应用场景:
Janus-Pro-7B 具有广泛的应用场景,例如:

内容创作: 可以帮助用户生成高质量的图像、文本和其他多媒体内容。
教育: 可以用于创建交互式学习体验,例如根据文本描述生成图像,或者根据图像内容回答问题。
客户服务: 可以用于构建更智能的聊天机器人,能够理解和回应用户的多模态查询。
辅助设计: 可以帮助设计师生成创意概念,并将其转化为可视化原型

1 启动Anaconda环境

在这里插入图片描述

在这里插入图片描述

2 进入命令环境

conda create -n myenv python=3.10 -y

git clone https://github.com/deepseek-ai/Janus.git

cd Janus

pip install -e .

pip install webencodings beautifulsoup4 tinycss2

pip install -e .[gradio]

pip install 'pexpect>4.3'

python demo/app_januspro.py

3 遇到默认配置下C盘磁盘空间不足问题

(myenvp) C:\Users\Administrator>python demo/app_januspro.py
python: can't open file 'C:\\Users\\Administrator\\demo\\app_januspro.py': [Errno 2] No such file or directory

(myenvp) C:\Users\Administrator>e:

(myenvp) E:\>cd ai


(myenvp) E:\AI>cd Janus



(myenvp) E:\AI\Janus>dir
 驱动器 E 中的卷是 chia-12T-1
 卷的序列号是 0AF0-159B

 E:\AI\Janus 的目录

2025/01/31  12:26    <DIR>          .
2025/01/30  00:53    <DIR>          ..
2025/01/30  00:53               115 .gitattributes
2025/01/30  00:53             7,301 .gitignore
2025/01/30  01:47    <DIR>          .gradio
2025/01/30  01:18    <DIR>          .locks
2025/01/31  12:26                 0 4.3'
2025/01/30  00:53    <DIR>          demo
2025/01/30  00:53             4,515 generation_inference.py
2025/01/30  00:53    <DIR>          images
2025/01/30  00:53             2,642 inference.py
2025/01/30  00:53             5,188 interactivechat.py
2025/01/30  01:04    <DIR>          janus
2025/01/31  12:25    <DIR>          janus.egg-info
2025/01/30  00:53         2,846,268 janus_pro_tech_report.pdf
2025/01/30  00:53             1,065 LICENSE-CODE
2025/01/30  00:53            13,718 LICENSE-MODEL
2025/01/30  00:53             3,069 Makefile
2025/01/30  01:47    <DIR>          models--deepseek-ai--Janus-Pro-7B
2025/01/30  00:53             1,111 pyproject.toml
2025/01/30  00:53            26,742 README.md
2025/01/30  00:53               278 requirements.txt
2025/01/30  01:18                 1 version.txt
              14 个文件      2,912,013 字节
               9 个目录 9,387,683,614,720 可用字节

3.1 设置HF_DATASETS_CACHE环境变量没解决问题

(myenvp) E:\AI\Janus>set HF_DATASETS_CACHE="E:\AI\Janus"


(myenvp) E:\AI\Janus>python demo/app_januspro.py
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead
  warnings.warn(
Downloading shards:   0%|                                                                        | 0/2 [00:00<?, ?it/s]D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py:651: UserWarning: Not enough free disk space to download the file. The expected file size is: 9988.18 MB. The target location C:\Users\Administrator\.cache\huggingface\hub\models--deepseek-ai--Janus-Pro-7B\blobs only has 8154.37 MB free disk space.
  warnings.warn(
pytorch_model-00001-of-00002.bin:  37%|███████████████▉                           | 3.71G/9.99G [00:05<02:38, 39.5MB/s]
Downloading shards:   0%|                                                                        | 0/2 [00:06<?, ?it/s]
Traceback (most recent call last):
  File "E:\AI\Janus\demo\app_januspro.py", line 19, in <module>
    vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
  File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrained
    return model_class.from_pretrained(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\modeling_utils.py", line 3944, in from_pretrained
    resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\utils\hub.py", line 1098, in get_checkpoint_shard_files
    cached_filename = cached_file(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\utils\hub.py", line 403, in cached_file
    resolved_file = hf_hub_download(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\utils\_validators.py", line 114, in _inner_fn
    return fn(*args, **kwargs)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 860, in hf_hub_download
    return _hf_hub_download_to_cache_dir(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 1009, in _hf_hub_download_to_cache_dir
    _download_to_tmp_and_move(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 1543, in _download_to_tmp_and_move
    http_get(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 452, in http_get
    for chunk in r.iter_content(chunk_size=constants.DOWNLOAD_CHUNK_SIZE):
  File "D:\anaconda3\envs\myenvp\lib\site-packages\requests\models.py", line 820, in generate
    yield from self.raw.stream(chunk_size, decode_content=True)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 1066, in stream
    data = self.read(amt=amt, decode_content=decode_content)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 955, in read
    data = self._raw_read(amt)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 879, in _raw_read
    data = self._fp_read(amt, read1=read1) if not fp_closed else b""
  File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 862, in _fp_read
    return self._fp.read(amt) if amt is not None else self._fp.read()
  File "D:\anaconda3\envs\myenvp\lib\http\client.py", line 466, in read
    s = self.fp.read(amt)
  File "D:\anaconda3\envs\myenvp\lib\socket.py", line 717, in readinto
    return self._sock.recv_into(b)
  File "D:\anaconda3\envs\myenvp\lib\ssl.py", line 1307, in recv_into
    return self.read(nbytes, buffer)
  File "D:\anaconda3\envs\myenvp\lib\ssl.py", line 1163, in read
    return self._sslobj.read(len, buffer)
KeyboardInterrupt
^C

3.2 设置环境变量HF_HOME解决问题

(myenvp) E:\AI\Janus>set HF_HOME=E:\AI\Janus

(myenvp) E:\AI\Janus>python demo/app_januspro.py
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead
  warnings.warn(
config.json: 100%|████████████████████████████████████████████████████████████████████████| 1.28k/1.28k [00:00<?, ?B/s]
pytorch_model.bin.index.json: 100%|███████████████████████████████████████████████| 89.0k/89.0k [00:00<00:00, 1.67MB/s]
model.safetensors.index.json: 100%|███████████████████████████████████████████████| 92.8k/92.8k [00:00<00:00, 2.99MB/s]
pytorch_model-00001-of-00002.bin:  15%|██████▌                                    | 1.53G/9.99G [00:37<03:26, 41.0MB/s]
Downloading shards:   0%|                                                                        | 0/2 [00:37<?, ?it/s]
Traceback (most recent call last):
  File "E:\AI\Janus\demo\app_januspro.py", line 19, in <module>
    vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
  File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrained
    return model_class.from_pretrained(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\modeling_utils.py", line 3944, in from_pretrained
    resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\utils\hub.py", line 1098, in get_checkpoint_shard_files
    cached_filename = cached_file(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\utils\hub.py", line 403, in cached_file
    resolved_file = hf_hub_download(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\utils\_validators.py", line 114, in _inner_fn
    return fn(*args, **kwargs)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 860, in hf_hub_download
    return _hf_hub_download_to_cache_dir(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 1009, in _hf_hub_download_to_cache_dir
    _download_to_tmp_and_move(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 1543, in _download_to_tmp_and_move
    http_get(
  File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 452, in http_get
    for chunk in r.iter_content(chunk_size=constants.DOWNLOAD_CHUNK_SIZE):
  File "D:\anaconda3\envs\myenvp\lib\site-packages\requests\models.py", line 820, in generate
    yield from self.raw.stream(chunk_size, decode_content=True)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 1066, in stream
    data = self.read(amt=amt, decode_content=decode_content)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 955, in read
    data = self._raw_read(amt)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 879, in _raw_read
    data = self._fp_read(amt, read1=read1) if not fp_closed else b""
  File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 862, in _fp_read
    return self._fp.read(amt) if amt is not None else self._fp.read()
  File "D:\anaconda3\envs\myenvp\lib\http\client.py", line 466, in read
    s = self.fp.read(amt)
  File "D:\anaconda3\envs\myenvp\lib\socket.py", line 717, in readinto
    return self._sock.recv_into(b)
  File "D:\anaconda3\envs\myenvp\lib\ssl.py", line 1307, in recv_into
    return self.read(nbytes, buffer)
  File "D:\anaconda3\envs\myenvp\lib\ssl.py", line 1163, in read
    return self._sslobj.read(len, buffer)
KeyboardInterrupt
^C

3.3 如果没下载好模型文件忽略这步

如果之前已经下载好模型文件,将models–deepseek-ai–Janus-Pro-7B目录拷贝到E:\AI\Janus\hub

(myenvp) E:\AI\Janus>python demo/app_januspro.py
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead
  warnings.warn(
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████| 2/2 [00:44<00:00, 22.13s/it]
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: ignore_id, num_image_tokens, add_special_token, mask_prompt, image_tag, sft_format.
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.
--------
Running on public URL: https://cf6180260c7448cc2b.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
Keyboard interruption in main thread... closing server.
Traceback (most recent call last):
  File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2361, in block_thread
    time.sleep(0.1)
KeyboardInterrupt

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "E:\AI\Janus\demo\app_januspro.py", line 244, in <module>
    demo.launch(share=True)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2266, in launch
    self.block_thread()
  File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2365, in block_thread
    self.server.close()
  File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\networking.py", line 75, in close
    self.thread.join()
  File "D:\anaconda3\envs\myenvp\lib\threading.py", line 1096, in join
    self._wait_for_tstate_lock()
  File "D:\anaconda3\envs\myenvp\lib\threading.py", line 1116, in _wait_for_tstate_lock
    if lock.acquire(block, timeout):
KeyboardInterrupt
Killing tunnel 127.0.0.1:7860 <> https://cf6180260c7448cc2b.gradio.live
^C

4 强制使用显卡

(myenvp) E:\AI\Janus>python demo/app_januspro.py --device cuda
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead
  warnings.warn(
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████| 2/2 [00:06<00:00,  3.29s/it]
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: num_image_tokens, image_tag, ignore_id, mask_prompt, sft_format, add_special_token.
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.
--------
Running on public URL: https://342ecb20d5120e7d8c.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
Keyboard interruption in main thread... closing server.
Traceback (most recent call last):
  File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2361, in block_thread
    time.sleep(0.1)
KeyboardInterrupt

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "E:\AI\Janus\demo\app_januspro.py", line 244, in <module>
    demo.launch(share=True)
  File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2266, in launch
    self.block_thread()
  File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2365, in block_thread
    self.server.close()
  File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\networking.py", line 75, in close
    self.thread.join()
  File "D:\anaconda3\envs\myenvp\lib\threading.py", line 1096, in join
    self._wait_for_tstate_lock()
  File "D:\anaconda3\envs\myenvp\lib\threading.py", line 1116, in _wait_for_tstate_lock
    if lock.acquire(block, timeout):
KeyboardInterrupt
Killing tunnel 127.0.0.1:7860 <> https://342ecb20d5120e7d8c.gradio.live
^C

5 部分部署过程

(myenvp) E:\AI\Janus>pip install -e .
Obtaining file:///E:/AI/Janus
  Installing build dependencies ... done
  Checking if build backend supports build_editable ... done
  Getting requirements to build editable ... done
  Preparing editable metadata (pyproject.toml) ... done
Requirement already satisfied: torch>=2.0.1 in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (2.5.1+cu121)
Requirement already satisfied: transformers>=4.38.2 in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (4.48.1)
Requirement already satisfied: timm>=0.9.16 in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (1.0.14)
Requirement already satisfied: accelerate in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (1.3.0)
Requirement already satisfied: sentencepiece in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (0.1.96)
Requirement already satisfied: attrdict in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (2.0.1)
Requirement already satisfied: einops in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (0.8.0)
Requirement already satisfied: torchvision in d:\anaconda3\envs\myenvp\lib\site-packages (from timm>=0.9.16->janus==1.0.0) (0.20.1+cu121)
Requirement already satisfied: pyyaml in d:\anaconda3\envs\myenvp\lib\site-packages (from timm>=0.9.16->janus==1.0.0) (6.0.2)
Requirement already satisfied: huggingface_hub in d:\anaconda3\envs\myenvp\lib\site-packages (from timm>=0.9.16->janus==1.0.0) (0.28.0)
Requirement already satisfied: safetensors in d:\anaconda3\envs\myenvp\lib\site-packages (from timm>=0.9.16->janus==1.0.0) (0.5.2)
Requirement already satisfied: filelock in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (3.17.0)
Requirement already satisfied: typing-extensions>=4.8.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (4.12.2)
Requirement already satisfied: networkx in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (3.4.2)
Requirement already satisfied: jinja2 in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (3.1.5)
Requirement already satisfied: fsspec in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (2024.12.0)
Requirement already satisfied: sympy==1.13.1 in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (1.13.1)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from sympy==1.13.1->torch>=2.0.1->janus==1.0.0) (1.3.0)
Requirement already satisfied: numpy>=1.17 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (1.26.4)
Requirement already satisfied: packaging>=20.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (24.2)
Requirement already satisfied: regex!=2019.12.17 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (2024.11.6)
Requirement already satisfied: requests in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (2.32.3)
Requirement already satisfied: tokenizers<0.22,>=0.21 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (0.21.0)
Requirement already satisfied: tqdm>=4.27 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (4.64.0)
Requirement already satisfied: psutil in d:\anaconda3\envs\myenvp\lib\site-packages (from accelerate->janus==1.0.0) (6.1.1)
Requirement already satisfied: six in d:\anaconda3\envs\myenvp\lib\site-packages (from attrdict->janus==1.0.0) (1.17.0)
Requirement already satisfied: colorama in d:\anaconda3\envs\myenvp\lib\site-packages (from tqdm>=4.27->transformers>=4.38.2->janus==1.0.0) (0.4.5)
Requirement already satisfied: MarkupSafe>=2.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from jinja2->torch>=2.0.1->janus==1.0.0) (2.1.5)
Requirement already satisfied: charset-normalizer<4,>=2 in d:\anaconda3\envs\myenvp\lib\site-packages (from requests->transformers>=4.38.2->janus==1.0.0) (3.4.1)
Requirement already satisfied: idna<4,>=2.5 in d:\anaconda3\envs\myenvp\lib\site-packages (from requests->transformers>=4.38.2->janus==1.0.0) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in d:\anaconda3\envs\myenvp\lib\site-packages (from requests->transformers>=4.38.2->janus==1.0.0) (2.3.0)
Requirement already satisfied: certifi>=2017.4.17 in d:\anaconda3\envs\myenvp\lib\site-packages (from requests->transformers>=4.38.2->janus==1.0.0) (2024.12.14)
Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from torchvision->timm>=0.9.16->janus==1.0.0) (10.4.0)
Building wheels for collected packages: janus
  Building editable for janus (pyproject.toml) ... done
  Created wheel for janus: filename=janus-1.0.0-0.editable-py3-none-any.whl size=16196 sha256=cdb0ebb0c36046bf768a84cbf9208824eadb31fadea888f3b6ff102de576f743
  Stored in directory: C:\Users\Administrator\AppData\Local\Temp\pip-ephem-wheel-cache-dhnej7iy\wheels\e4\87\ba\dd6e5c70086c786d25bcd3e6bddaeb7c46f5ae69dc25ea8be0
Successfully built janus
Installing collected packages: janus
  Attempting uninstall: janus
    Found existing installation: janus 1.0.0
    Uninstalling janus-1.0.0:
      Successfully uninstalled janus-1.0.0
Successfully installed janus-1.0.0

(myenvp) E:\AI\Janus>pip install webencodings beautifulsoup4 tinycss2
Requirement already satisfied: webencodings in d:\anaconda3\envs\myenvp\lib\site-packages (0.5.1)
Requirement already satisfied: beautifulsoup4 in d:\anaconda3\envs\myenvp\lib\site-packages (4.12.3)
Requirement already satisfied: tinycss2 in d:\anaconda3\envs\myenvp\lib\site-packages (1.4.0)
Requirement already satisfied: soupsieve>1.2 in d:\anaconda3\envs\myenvp\lib\site-packages (from beautifulsoup4) (2.6)

(myenvp) E:\AI\Janus>pip install 'pexpect>4.3'
ERROR: Invalid requirement: "'pexpect": Expected package name at the start of dependency specifier
    'pexpect
    ^

(myenvp) E:\AI\Janus>pip install 'pexpect>4.3'
ERROR: Invalid requirement: "'pexpect": Expected package name at the start of dependency specifier
    'pexpect
    ^

(myenvp) E:\AI\Janus>pip install "pexpect>4.3"
Requirement already satisfied: pexpect>4.3 in d:\anaconda3\envs\myenvp\lib\site-packages (4.9.0)
Requirement already satisfied: ptyprocess>=0.5 in d:\anaconda3\envs\myenvp\lib\site-packages (from pexpect>4.3) (0.7.0)

(myenvp) E:\AI\Janus>python demo/app_januspro.py
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead
  warnings.warn(
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████| 2/2 [00:06<00:00,  3.25s/it]
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: ignore_id, sft_format, image_tag, num_image_tokens, mask_prompt, add_special_token.
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.
--------
Running on public URL: https://b0590adff3d54b2255.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
Keyboard interruption in main thread... closing server.
Killing tunnel 127.0.0.1:7860 <> https://b0590adff3d54b2255.gradio.live

(myenvp) E:\AI\Janus>python demo/app_januspro.py --device cuda
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead
  warnings.warn(
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████| 2/2 [00:06<00:00,  3.05s/it]
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: image_tag, sft_format, ignore_id, add_special_token, num_image_tokens, mask_prompt.
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.
--------
Running on public URL: https://72d4294c2d37f91dc8.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)

6 使用效果

6.1 识别图片

在这里插入图片描述

在这里插入图片描述

6.2 文生图

在这里插入图片描述

6.2.1 浣熊师父身穿滴水服装,扮演街头歹徒。

Master shifu racoon wearing drip attire as a street gangster.

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.2.2 美丽女孩的脸

The face of a beautiful girl
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

6.2.3 丛林中的宇航员,冷色调,柔和的色彩,细节丰富,8k

Astronaut in a jungle, cold color palette, muted colors, detailed, 8k
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.2.4 反光面上的一杯红酒。

A glass of red wine on a reflective surface.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.2.5 一只可爱又迷人的小狐狸,有着大大的棕色眼睛,背景中秋叶迷人,永恒、蓬松、闪亮的鬃毛、花瓣、童话般的氛围,虚幻引擎 5 和 Octane 渲染器,细节丰富,具有照片级真实感,具有电影感,色彩自然。

A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.2.6 这幅画中的眼睛设计精巧,背景为圆形,饰有华丽的漩涡图案,既有现实主义的色彩,也有超现实主义的色彩。画中焦点是一只鲜艳的蓝色虹膜,周围环绕着从瞳孔向外辐射的细纹,营造出深度和强度。睫毛又长又黑,在周围的皮肤上投下微妙的阴影,皮肤看起来很光滑,但略带纹理,仿佛随着时间的流逝而老化或风化。眼睛上方有一个类似古典建筑的石头结构,为构图增添了神秘感和永恒的优雅。这一建筑元素与周围的有机曲线形成鲜明而和谐的对比。眼睛下方是另一个让人联想到巴洛克艺术的装饰图案,进一步增强了每个精心制作的细节所蕴含的整体永恒感。总体而言,氛围散发着一种神秘的气氛,与暗示永恒的元素无缝交织在一起,通过现实纹理和超现实艺术的并置实现。每一个组成部分——从吸引眼球的复杂设计到上方古老的石块——都以独特的方式创造出充满神秘魅力的视觉盛宴。

The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.

Above the eye, there’s a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail.

Overall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component—from the intricate designs framing the eye to the ancient-looking stone piece above—contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2289422.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【详细教程】如何在Mac部署Deepseek R1?

DeepSeek是目前最火的国产大模型&#xff0c;官方App用户太多服务经常出现卡顿&#xff0c;部署一个本地DeepSeek R1可以方便使用。 1.系统最低要求 macOS 11 Big Sur 或更新 2.下载ollama https://ollama.com/ 3.安装DeepSeek R1 打开终端 运行命令 ollama run deepseek-…

DeepSeek能下围棋吗?(续)

休息了一下&#xff0c;接着琢磨围棋&#xff0c;其实前面一篇里的规则有个漏洞的&#xff0c;就是邻居关系定义有问题&#xff0c;先回顾一下游戏规则&#xff1a; 游戏规则 定义&#xff1a; 1.数字对&#xff0c;是指两个1到9之间的整数组成的有序集合。可与记为(m,n)&…

【产品经理学习案例——AI翻译棒出海业务】

前言&#xff1a; 本文主要讲述了硬件产品在出海过程中&#xff0c;翻译质量、翻译速度和本地化落地策略是硬件产品规划需要考虑的核心因素。针对不同国家&#xff0c;需要优化翻译质量和算法&#xff0c;关注市场需求和文化差异&#xff0c;以便更好地满足当地用户的需求。同…

被裁与人生的意义--春节随想

还有两个月就要被迫离开工作了十多年的公司了&#xff0c;不过有幸安安稳稳的过了一个春节&#xff0c;很知足! 我是最后一批要离开的&#xff0c;一百多号同事都没“活到”蛇年。看着一批批仁人志士被“秋后斩首”&#xff0c;马上轮到我们十来个&#xff0c;个中滋味很难言清…

4-图像梯度计算

文章目录 4.图像梯度计算(1)Sobel算子(2)梯度计算方法(3)Scharr与Laplacian算子4.图像梯度计算 (1)Sobel算子 图像梯度-Sobel算子 Sobel算子是一种经典的图像边缘检测算子,广泛应用于图像处理和计算机视觉领域。以下是关于Sobel算子的详细介绍: 基本原理 Sobel算子…

【算法设计与分析】实验5:贪心算法—装载及背包问题

目录 一、实验目的 二、实验环境 三、实验内容 四、核心代码 五、记录与处理 六、思考与总结 七、完整报告和成果文件提取链接 一、实验目的 掌握贪心算法求解问题的思想&#xff1b;针对不同问题&#xff0c;会利用贪心算法进行问题建模、求解以及时间复杂度分析&#x…

MySQL为什么默认引擎是InnoDB ?

大家好&#xff0c;我是锋哥。今天分享关于【MySQL为什么默认引擎是InnoDB &#xff1f;】面试题。希望对大家有帮助&#xff1b; MySQL为什么默认引擎是InnoDB &#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 MySQL 默认引擎是 InnoDB&#xff0c;主要…

【AIGC专栏】AI在自然语言中的应用场景

ChatGPT出来以后&#xff0c;突然间整个世界都非常的为之一惊。很多人大喊AI即将读懂人类&#xff0c;虽然这是一句夸大其词的话&#xff0c;但是经过未来几十年的迭代&#xff0c;ChatGPT会变成什么样我们还真的很难说。在当前生成式内容来说&#xff0c;ChatGPT毫无疑问在当前…

docker安装nacos2.2.4详解(含:nacos容器启动参数、环境变量、常见问题整理)

一、镜像下载 1、在线下载 在一台能连外网的linux上执行docker镜像拉取命令 docker pull nacos:2.2.4 2、离线包下载 两种方式&#xff1a; 方式一&#xff1a; -&#xff09;在一台能连外网的linux上安装docker执行第一步的命令下载镜像 -&#xff09;导出 # 导出镜像到…

使用 postman 测试思源笔记接口

思源笔记 API 权鉴 官方文档-中文&#xff1a;https://github.com/siyuan-note/siyuan/blob/master/API_zh_CN.md 权鉴相关介绍截图&#xff1a; 对应的xxx&#xff0c;在软件中查看 如上图&#xff1a;在每次发送 API 请求时&#xff0c;需要在 Header 中添加 以下键值对&a…

51单片机开发——I2C通信接口

I2C是微电子通信控制领域广泛采用的一种总线标准。 起始和停止信号&#xff1a; void iic_start(void) {IIC_SDA1;//如果把该条语句放在SCL后面&#xff0c;第二次读写会出现问题delay_10us(1);IIC_SCL1;delay_10us(1);IIC_SDA0; //当SCL为高电平时&#xff0c;SDA由高变为低d…

【网络】3.HTTP(讲解HTTP协议和写HTTP服务)

目录 1 认识URL1.1 URI的格式 2 HTTP协议2.1 请求报文2.2 响应报文 3 模拟HTTP3.1 Socket.hpp3.2 HttpServer.hpp3.2.1 start()3.2.2 ThreadRun()3.2.3 HandlerHttp&#xff08;&#xff09; 总结 1 认识URL 什么是URI&#xff1f; URI 是 Uniform Resource Identifier的缩写&…

优雅管理Python2 and python3

python2 和 python3&#xff0c; 由于没有像其他软件的向下兼容&#xff0c;必须同时安装Python2 和Python3 &#xff0c;介绍在linux和windows下优雅管理。 一、linux中安装Python2和Python3 linux 中用conda 创建虚拟环境&#xff0c;来管理不同版版工具 由于主流使用Python3…

Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍

前言&#xff1a; 零基础学Python&#xff1a;Python从0到100最新最全教程。 想做这件事情很久了&#xff0c;这次我更新了自己所写过的所有博客&#xff0c;汇集成了Python从0到100&#xff0c;共一百节课&#xff0c;帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…

大模型本地化部署(Ollama + Open-WebUI)

文章目录 环境准备下载Ollama模型下载下载Open-WebUI 本地化部署的Web图形化界面本地模型联网查询安装 Docker安装 SearXNG本地模型联网查询 环境准备 下载Ollama 下载地址&#xff1a;Ollama网址 安装完成后&#xff0c;命令行里执行命令 ollama -v查看是否安装成功。安装成…

【Linux系统】进程间通信:共享内存

认识共享内存 通过 一些系统调用&#xff0c;在物理内存中开辟一块空间&#xff0c;然后将该空间的起始地址&#xff0c;通过页表映射到两个进程的虚拟地址空间的共享区中&#xff0c;这样不就共享了一块空间吗&#xff01;&#xff01;&#xff01; 这种技术就是共享内存&am…

渗透测试之WAF组合条件绕过方式手法详解以及SQL注入参数污染绕过

目录 组合绕过waf ​先看一些语句 绕过方式 我给出的注入语句是&#xff1a; 这里要注意的几点是&#xff1a; 组合绕过方式 完整过狗注入语句集合 http请求分块传输方法 其它方式绕过 http参数污染绕过waf 面试题:如何参数污染绕过waf 可以通过http参数污染绕过wa…

oracl:多表查询>>表连接[内连接,外连接,交叉连接,自连接,自然连接,等值连接和不等值连接]

SQL&#xff08;Structured Query Language&#xff0c;结构化查询语言&#xff09;是一种用于管理和操作关系数据库的标准编程语言。 sql分类: 数据查询语言&#xff08;DQL - Data Query Language&#xff09; 查询的关键词 select 多表查询>>表连接 表连接: 把2个…

ARIMA详细介绍

ARIMA&#xff08;AutoRegressive Integrated Moving Average&#xff0c;自回归积分滑动平均模型&#xff09;是一种用于时间序列分析和预测的统计模型。它结合了自回归&#xff08;AR&#xff09;、差分&#xff08;I&#xff09;和移动平均&#xff08;MA&#xff09;三种方…

飞致云开源社区月度动态报告(2025年1月)

自2023年6月起&#xff0c;中国领先的开源软件公司飞致云以月度为单位发布《飞致云开源社区月度动态报告》&#xff0c;旨在向广大社区用户同步飞致云旗下系列开源软件的发展情况&#xff0c;以及当月主要的产品新版本发布、社区运营成果等相关信息。 飞致云开源运营数据概览&…