深度学习|表示学习|卷积神经网络|参数共享是什么?|07

news2025/1/30 12:42:02

如是我闻: Parameter Sharing(参数共享)是卷积神经网络(CNN)的一个重要特性,帮助它高效地处理数据。参数共享的本质就是参数“本来也没有变过”。换句话说,在卷积层中,卷积核的参数(权重和偏置)是固定不变的,在整个输入上重复使用。

请添加图片描述


什么是参数共享(Parameter Sharing)?

参数共享 是指:
在卷积层中,同一个卷积核(filter)在整个输入图像上重复使用,计算所有局部区域的特征
换句话说:

  • 对于每一层的卷积操作,同一个卷积核的权重在图像的不同位置是相同的。
  • 这样,模型在处理不同位置的局部区域时,使用的是相同的参数(权重)

参数共享是如何实现的?

1. 卷积核在空间维度上的滑动:
  • 假设输入是一个 32 × 32 32 \times 32 32×32的图像,卷积核大小为 3 × 3 3 \times 3 3×3
    • 卷积核会从左上角开始,逐步在图像上滑动(移动一个步长),对每个 3 × 3 3 \times 3 3×3 区域执行点积计算。
    • 在滑动过程中,卷积核的参数(权重和偏置)保持不变。
    • 这样,卷积核在整个图像上提取相同类型的特征(例如边缘、纹理等)。
2. 跨通道的参数共享:
  • 如果输入图像有多个通道(例如 RGB 图像有 3 个通道),每个卷积核的深度与输入的通道数相同。
  • 卷积核的权重在所有输入通道上共享,并综合每个通道的特征,生成一个输出值。
3. 多个卷积核产生多个特征图:
  • 一层可以有多个卷积核(比如 64 个),每个卷积核学习不同的特征。
  • 每个卷积核的参数是独立的,但它本身的参数在输入的不同位置是共享的。

为什么要使用参数共享?

1. 减少参数数量:
  • 全连接层:
    如果输入是 32 × 32 32 \times 32 32×32 的图像,假设有 1 个神经元连接整个图像,则需要 32 × 32 = 1024 32 \times 32 = 1024 32×32=1024 个参数。如果有 1000 个神经元,则需要 1024 × 1000 = 1 , 024 , 000 1024 \times 1000 = 1,024,000 1024×1000=1,024,000个参数。
  • 卷积层:
    使用一个大小为 3 × 3 3 \times 3 3×3的卷积核,它只有 3 × 3 = 9 3 \times 3 = 9 3×3=9 个参数(再加一个偏置,共 10 个参数),而它可以在整个图像上滑动重复使用。

因此,参数共享大幅减少了模型的参数数量,使模型更容易训练,并减少过拟合的风险。

2. 捕获空间不变性:
  • 自然数据(如图像)中的某些特征是局部的和重复的。例如,边缘、角点或纹理可能出现在图像的不同位置。
  • 参数共享允许卷积核在整个图像上“搜索”这些特征,而无需为每个位置单独训练一组参数。
3. 提高计算效率:
  • 共享参数减少了计算量,因为在整个输入上重复使用相同的权重,而不是为每个位置训练独立的权重。

参数共享的一个具体示例

输入:
  • 假设输入是一个 32 × 32 × 3 32 \times 32 \times 3 32×32×3的 RGB 图像。
卷积核:
  • 使用一个大小为 3 × 3 × 3 3 \times 3 \times 3 3×3×3 的卷积核。
  • 该卷积核有 3 × 3 × 3 = 27 3 \times 3 \times 3 = 27 3×3×3=27 个权重,加上 1 个偏置参数,总共有 28 个参数。
滑动操作:
  • 卷积核会从左上角开始,在整个图像上滑动,逐步提取特征。
  • 对于每个 3 × 3 × 3 3 \times 3 \times 3 3×3×3 的局部区域,卷积核会执行点积计算,并生成一个输出值。
  • 卷积核的 28 个参数在整个 32 × 32 × 3 32 \times 32 \times 3 32×32×3 的输入上是共享的。
输出:
  • 如果输出特征图的大小是 30 × 30 30 \times 30 30×30(假设没有填充),那么整个输出中包含 30 × 30 = 900 30 \times 30 = 900 30×30=900 个值,这 900 个值是由同一个卷积核生成的。

没有参数共享会怎样?

假如没有参数共享,每个位置的感受野都需要一个独立的卷积核参数:

  • 如果输入是 32 × 32 × 3 32 \times 32 \times 3 32×32×3,卷积核大小为 3 × 3 × 3 3 \times 3 \times 3 3×3×3,输出大小是 30 × 30 × 1 30 \times 30 \times 1 30×30×1,那么:
    • 每个位置需要独立的 3 × 3 × 3 = 27 3 \times 3 \times 3 = 27 3×3×3=27个参数。
    • 总参数数目为 30 × 30 × 27 = 24 , 300 30 \times 30 \times 27 = 24,300 30×30×27=24,300

相比之下,使用参数共享时,卷积核只需要 28 个参数(包含偏置),参数大幅减少。


卷积层的参数共享 vs 全连接层

特性卷积层(参数共享)全连接层(无参数共享)
连接方式每个卷积核只与局部区域相连,参数共享每个神经元与输入的所有单元相连
参数数量参数数量较少,参数共享参数数量多,与输入规模成正比
特征提取能力强调局部特征(如边缘、纹理),支持平移不变性更适合全局特征,不支持局部模式提取
计算效率更高,因为参数共享且局部连接计算开销大,特别是高维输入

总的来说

  1. 参数共享的本质:
    卷积核的权重在输入数据的不同区域共享,从而减少参数数量并提高计算效率。

  2. 带来的优势:

    • 参数数量减少,更易训练。
    • 特征共享,对输入的不同位置学习相同的模式。
    • 提高模型的泛化能力,降低过拟合风险。

以上

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2284690.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【25考研】人大计算机考研复试该怎么准备?有哪些注意事项?

人大毕竟是老牌985,复试难度不会太低!建议同学认真复习!没有机试还是轻松一些的! 一、复试内容 由公告可见,复试包含笔试及面试,没有机试! 二、参考书目 官方无给出参考书目,可参照…

国内优秀的FPGA设计公司主要分布在哪些城市?

近年来,国内FPGA行业发展迅速,随着5G通信、人工智能、大数据等新兴技术的崛起,FPGA设计企业的需求也迎来了爆发式增长。很多技术人才在求职时都会考虑城市的行业分布和发展潜力。因此,国内优秀的FPGA设计公司主要分布在哪些城市&a…

DeepSeek-R1:将强化学习用于激励大型语言模型的推理能力

目录 引言 一、DeepSeek-R1的贡献 二、DeepSeek-R1的方法 2.1、DeepSeek-R1-Zero:基础模型上的强化学习 2.2、DeepSeek-R1:冷启动强化学习 2.3、蒸馏:赋予小模型推理能力 三、DeepSeek-R1实验结果 3.1、模型优点 3.2、模型缺点 四、…

DPO、KTO、DiffusionDPO

DPO(Direct Preference Optimization) 原文来自于 https://arxiv.org/pdf/2305.18290, Bradley-Terry (BT)模型,假设人的喜欢遵循下面的公式,给定x,得到 y 1 y_1 y1​和 y 2 y_2 y2​分别遵循以下关系&am…

分享|instructionfine-tuning 指令微调是提高LLM性能和泛化能力的通用方法

《生成式AI导论》课程中,李宏毅老师提到一篇关于“ instruction fine-tuning” 指令微调的论文: 《Scaling Instruction-Finetuned Language Models》 摘要分享: 事实证明, 在一组以指令形式表达的数据集上微调语言模型可以提…

Mac Electron 应用签名(signature)和公证(notarization)

在MacOS 10.14.5之后,如果应用没有在苹果官方平台进行公证notarization(我们可以理解为安装包需要审核,来判断是否存在病毒),那么就不能被安装。当然现在很多人的解决方案都是使用sudo spctl --master-disable,取消验证模式&#…

C++学习——认识和与C的区别

目录 前言 一、什么是C 二、C关键字 三、与C语言不同的地方 3.1头文件 四、命名空间 4.1命名空间的概念写法 4.2命名空间的访问 4.3命名空间的嵌套 4.4命名空间在实际中的几种写法 五、输入输出 5.1cout 5.2endl 5.3cin 总结 前言 开启新的篇章,这里…

基于Django的豆瓣影视剧推荐系统的设计与实现

【Django】基于Django的豆瓣影视剧推荐系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用了Python作为后端开发语言,采用Django作为后端架构,结…

Open FPV VTX开源之ardupilot双OSD配置摄像头

Open FPV VTX开源之ardupilot双OSD配置 1 源由2. 分析3. 配置4. 解决办法5. 参考资料 1 源由 鉴于笔者这台Mark4 Copter已经具备一定的历史,目前机载了两个FPV摄像头: 模拟摄像头数字摄像头(OpenIPC) 测试场景: 从稳定性的角度&#xff1…

【岛屿个数——BFS / DFS,“外海”】

题目 推荐阅读 AcWing 4959. 岛屿个数&#xff08;两种解法&#xff0c;通俗解释&#xff09; - AcWing 1.岛屿个数 - 蓝桥云课 (lanqiao.cn) 代码 #include <bits/stdc.h> using namespace std; #define x first #define y second int dx4[4] {-1, 0, 1, 0}, dy4[4] …

《STL基础之vector、list、deque》

【vector、list、deque导读】vector、list、deque这三种序列式的容器&#xff0c;算是比较的基础容器&#xff0c;也是大家在日常开发中常用到的容器&#xff0c;因为底层用到的数据结构比较简单&#xff0c;笔者就将他们三者放到一起做下对比分析&#xff0c;介绍下基本用法&a…

基于Flask的豆瓣电影可视化系统的设计与实现

【FLask】基于Flask的豆瓣电影可视化系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 随着互联网技术的飞速发展&#xff0c;影视剧行业的数据量呈爆炸性增长&#xff0c;其中影…

LosslessScaling-学习版[steam价值30元的游戏无损放大/补帧工具]

LosslessScaling 链接&#xff1a;https://pan.xunlei.com/s/VOHc-yZBgwBOoqtdZAv114ZTA1?pwdxiih# 解压后运行"A-绿化-解压后运行我.cmd"

【JS|第28期】new Event():前端事件处理的利器

日期&#xff1a;2025年1月24日 作者&#xff1a;Commas 签名&#xff1a;(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释&#xff1a;如果您觉得有所帮助&#xff0c;帮忙点个赞&#xff0c;也可以关注我&#xff0c;我们一起成长&#xff1b;如果有不对的地方&#xf…

Blazor-Blazor Web App项目结构

让我们还是从创建项目开始&#xff0c;来一起了解下Blazor Web App的项目情况 创建项目 呈现方式 这里我们可以看到需要选择项目的呈现方式&#xff0c;有以上四种呈现方式 ● WebAssembly ● Server ● Auto(Server and WebAssembly) ● None 纯静态界面静态SSR呈现方式 WebAs…

观察者模式和订阅发布模式

有人把观察者模式等同于发布订阅模式&#xff0c;也有人认为这两种模式存在差异&#xff0c;本质上就是调度的方法不同。 相比较&#xff0c;发布订阅将发布者和观察者之间解耦。&#xff08;发布订阅有调度中心处理&#xff09;

16【中文编程10年内或将占领国内应用市场】

这同样是一篇较为犀利的文章&#xff0c;看过我分析辩论性文章的都知道&#xff0c;角度犀利&#xff0c;与大多数人观点不同&#xff0c;这是因为大多数人赞同的观点&#xff0c;我觉得我也没必要再去探讨了 回归正题&#xff0c;在大多数人眼中中文编程的代表就是易语言&…

Niagara学习笔记

橙色 发射器 , 绿色 粒子, 红色 渲染器 Emitter State 发射器状态 Life Cycle Mode&#xff08;生命周期模式&#xff09; 选择Self就是发射器自身管理生命周期 Loop Behavior 决定粒子发射次数 一次&#xff08;Once&#xff09;&#xff1a;发射器只播放一次多次&#…

Linux(NTP配置)

后面也会持续更新&#xff0c;学到新东西会在其中补充。 建议按顺序食用&#xff0c;欢迎批评或者交流&#xff01; 缺什么东西欢迎评论&#xff01;我都会及时修改的&#xff01; NTP环境搭建 服务端客户端192.168.111.10192.168.111.11Linux MySQL5.7 3.10.0-1160.el7.x86_…

具身智能体俯视全局的导航策略!TopV-Nav: 解锁多模态语言模型在零样本目标导航中的顶视空间推理潜力

作者&#xff1a;Linqing Zhong, Chen Gao, Zihan Ding, Yue Liao, Si Liu 单位&#xff1a;北京航空航天大学&#xff0c;新加坡国立大学&#xff0c;香港中文大学多模态实验室 论文标题&#xff1a;TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM …