爬虫基础之爬取某基金网站+数据分析

news2025/1/29 7:22:10

声明: 本案例仅供学习参考使用,任何不法的活动均与本作者无关

网站:天天基金网(1234567.com.cn) --首批独立基金销售机构-- 东方财富网旗下基金平台!

本案例所需要的模块:

1.requests 2.re(内置) 3.pandas 4.pyecharts

其他均需要 pip install 模块名

爬取步骤:

一.请求数据 模拟浏览器向服务器发送请求


F12 打开开发者模式 点击网络 搜索我们需要的数据 找到正确的接口

老样子 使用工具能够使我们节约时间 方便快捷但前提能够自己写就没问题


新建本地py文件复制过去 运行之后就可以看到与浏览器预览中一样的数据

接着我们需要对请求到的数据进行处理
这里我们使用正则是最好的
匹配所需的内容 即()里的

text = re.findall(r'datas:[(.*?)]',response.text)

二.提取数据 提取所需要的内容

然后我们观察放回的数据 把每条数据都提取出来

此时我们想该使用什么 去提取我们的数据呢 split字符串分割 or 正则
都不使用 此时选择eval函数去除引号 是最佳的选择

处理完之后就是一个个的元组 之后我们可以遍历元组保存数据

接着就是多页数据的采集 通过观察每一页的URL可知 pi参数控制着我们的页码
嵌套个for循坏 实现 翻页的操作

三.保存数据 保存数据到本地

_**因为这样保存的数据连个标头都没有 因此我们对照网站将表头写入

根据我们所拿取的数据对照 麻烦的话直接复制我的代码**_

# 保存的格式为utf-8-sig  单是utf-8的话会有乱码 看不懂 思密达

with open('基金.csv', 'a', encoding='utf-8-sig', newline='
') as f:
    f.write(
        '基金代码,基金简称,English,日期,基金净值,基金累计净值,日增长率,基金近1周,基金近1月,基金近3月,基金近6月,基金近1年,基金近2年,基金近3年,今年来,成立来,False,False,False,False,手续费,False,False,False,False,False')

后面发现需要进一步的处理csv文件里的数据 我就随便给个表头写入 后续通过pandas 提取所需要的列形成新的表格

以下是本案例的源代码 供大家交流使用

import requests
import re
import csv

with open('基金.csv', 'a', encoding='utf-8-sig', newline='
') as f:
    f.write(
        '基金代码,基金简称,English,日期,基金净值,基金累计净值,日增长率,基金近1周,基金近1月,基金近3月,基金近6月,基金近1年,基金近2年,基金近3年,今年来,成立来,False,False,False,False,手续费,False,False,False,False,False')
headers = {
    "Accept": "*/*",
    "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6",
    "Cache-Control": "no-cache",
    "Connection": "keep-alive",
    "Pragma": "no-cache",
    "Referer": "https://fund.eastmoney.com/data/fundranking.html",
    "Sec-Fetch-Dest": "script",
    "Sec-Fetch-Mode": "no-cors",
    "Sec-Fetch-Site": "same-origin",
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36 Edg/131.0.0.0",
    "sec-ch-ua": ""Microsoft Edge";v="131", "Chromium";v="131", "Not_A Brand";v="24"",
    "sec-ch-ua-mobile": "?0",
    "sec-ch-ua-platform": ""Windows""
}
cookies = {
    "ASP.NET_SessionId": "2n3frbs0qlvk51gumxde43jz",
    "st_si": "03571815072389",
    "st_pvi": "42679690302429",
    "st_sp": "2025-01-05%2020%3A21%3A57",
    "st_inirUrl": "https%3A%2F%2Ffund.eastmoney.com%2Fdata%2F",
    "st_sn": "1",
    "st_psi": "20250105202156911-112200312936-7115758265",
    "st_asi": "delete"
}
url = "https://fund.eastmoney.com/data/rankhandler.aspx"
for page in range(1,20):
    params = {
        "op": "ph",
        "dt": "kf",
        "ft": "all",
        "rs": "",
        "gs": "0",
        "sc": "1nzf",
        "st": "desc",
        "sd": "2024-01-05",
        "ed": "2025-01-05",
        "qdii": "",
        "tabSubtype": ",,,,,",
        "pi": page,
        "pn": "50",
        "dx": "1",
        "v": "0.7427594655500473"
    }
    response = requests.get(url, headers=headers, cookies=cookies, params=params)
    text = re.findall(r'datas:[(.*?)]', response.text)[0]
    tuple_data = eval(text)
    for tup in tuple_data:
        with open('基金.csv', 'a', encoding='utf-8-sig', newline='
') as f:
            f.write(tup)
            f.write('
')

数据清洗模块

准备步骤:
下载pandas模块 pip install pandas

此时可以新建一个py文件 方便我们清洗数据

# 第一步导包
import pandas as pd

# 读取文件
df = pd.read_csv('基金.csv')
# 获取该文件中所有的列名

print(df.columns)

将我们所需要的复制下来 形成一个新的文件

import pandas as pd

df = pd.read_csv('基金.csv')
# 语法

df[['基金代码', '基金简称', 'English', '日期', '基金净值', '基金累计净值', '日增长率', '基金近1周',
'基金近1月', '基金近3月', '基金近6月', '基金近1年', '基金近2年', '基金近3年', '今年来', '成立来','手续费']].to_csv('基金_New.csv', index=False,encoding='utf-8-sig')

print(df.columns)

现在就看着舒服多了

Explain:
如下图所示的列名中的数字0保存到csv文件中会消失 但在pycharm中可以正常显示

数据可视化模块

# 导包
# 需要下载pyecharts
import pandas as pd
from pyecharts.charts import Line
from pyecharts.options import LabelOpts
from pyecharts import options as opts

df = pd.read_csv('基金_New.csv')
# 将每一列的数据转换成列表 因为下面的表格数据需要list类型的
name = df['基金简称'].tolist()
value = df['基金净值'].tolist()
value_2 = df['基金累计净值'].tolist()
value_3 = df['基金近1周'].tolist()
# 折线图的生成
line = (
    Line(
    )
    # 生成x y轴的值
    .add_xaxis(name)
    .add_yaxis('基金净值', value, markpoint_opts=opts.MarkPointOpts(
        # 只显示数据中的最小值和最大值
        data=[opts.MarkPointItem(type_="max", name="最大值"),
              opts.MarkPointItem(type_="min", name="最小值")
              ]
    ))
    .add_yaxis('基金累计净值',value_2,markpoint_opts=opts.MarkPointOpts(

        data=[opts.MarkPointItem(type_="max", name="最大值"),
              opts.MarkPointItem(type_="min", name="最小值")
              ]
    ))
    .add_yaxis('基金近1周',value_3,markpoint_opts=opts.MarkPointOpts(

        data=[opts.MarkPointItem(type_="max", name="最大值"),
              opts.MarkPointItem(type_="min", name="最小值")
              ]
    ))
    # 将数值不显示出来 这样美观些
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))

).render('found.html')
# 最后生成html文件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2284114.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入理解动态规划(dp)--(提前要对dfs有了解)

前言:对于动态规划:该算法思维是在dfs基础上演化发展来的,所以我不想讲的是看到一个题怎样直接用动态规划来解决,而是说先用dfs搜索,一步步优化,这个过程叫做动态规划。(该文章教你怎样一步步的…

(1)STM32 USB设备开发-基础知识

开篇感谢: 【经验分享】STM32 USB相关知识扫盲 - STM32团队 ST意法半导体中文论坛 单片机学习记录_桃成蹊2.0的博客-CSDN博客 USB_不吃鱼的猫丿的博客-CSDN博客 1、USB鼠标_哔哩哔哩_bilibili usb_冰糖葫的博客-CSDN博客 USB_lqonlylove的博客-CSDN博客 USB …

基于STM32单片机设计的宠物喂食监控系统

1. 项目开发背景 随着宠物数量的增加,尤其是人们对宠物的养护需求日益增多,传统的人工喂养和管理方式难以满足现代养宠生活的需求。人们越来越希望通过智能化手段提高宠物养护的质量和效率,特别是对于宠物喂食、饮水、温湿度控制等方面的智能…

MATLAB绘图:随机彩色圆点图

这段代码在MATLAB中生成并绘制了500个随机位置和颜色的散点图。通过随机生成的x和y坐标以及颜色,用户可以直观地观察到随机点的分布。这种可视化方式在数据分析、统计学和随机过程的演示中具有广泛的应用。 文章目录 运行结果代码代码讲解 运行结果 代码 clc; clea…

重定向与缓冲区

4种重定向 我们有如下的代码&#xff1a; #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <string.h>#define FILE_NAME "log.txt"int main() {close(1)…

Golang Gin系列-8:单元测试与调试技术

在本章中&#xff0c;我们将探讨如何为Gin应用程序编写单元测试&#xff0c;使用有效的调试技术&#xff0c;以及优化性能。这包括设置测试环境、为处理程序和中间件编写测试、使用日志记录、使用调试工具以及分析应用程序以提高性能。 为Gin应用程序编写单元测试 设置测试环境…

九、CSS工程化方案

一、PostCSS介绍 二、PostCSS插件的使用 项目安装 - npm install postcss-cli 全局安装 - npm install postcss-cli -g postcss-cli地址&#xff1a;GitHub - postcss/postcss-cli: CLI for postcss postcss地址&#xff1a;GitHub - postcss/postcss: Transforming styles…

YOLOv11改进,YOLOv11检测头融合DSConv(动态蛇形卷积),并添加小目标检测层(四头检测),适合目标检测、分割等任务

前言 精确分割拓扑管状结构例如血管和道路,对各个领域至关重要,可确保下游任务的准确性和效率。然而,许多因素使任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。在这项工作中,注意到管状结构的特殊特征,并利用这一知识来引导 DSCNet 在三个阶段同时增强感知…

大数据治理实战指南:数据质量、合规与治理架构

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 引言 随着企业数字化转型的加速&#xff0c;大数据已成为驱动业务决策的核心资产。然而&#xff0c;数据治理的缺失或不完善&…

SQL Server 建立每日自动log备份的维护计划

SQLServer数据库可以使用维护计划完成数据库的自动备份&#xff0c;下面以在SQL Server 2012为例说明具体配置方法。 1.启动SQL Server Management Studio&#xff0c;在【对象资源管理器】窗格中选择数据库实例&#xff0c;然后依次选择【管理】→【维护计划】选项&#xff0…

three.js+WebGL踩坑经验合集(4.2):为什么不在可视范围内的3D点投影到2D的结果这么不可靠

上一篇&#xff0c;笔者留下了一个问题&#xff0c;three.js内置的THREE.Vector3.project方法算出来的结果对于超出屏幕可见范围的点来说错得相当离谱。 three.jsWebGL踩坑经验合集(4.1):THREE.Line2的射线检测问题&#xff08;注意本篇说的是Line2&#xff0c;同样也不是阈值…

window保存好看的桌面壁纸

1、按下【WINR】快捷键调出“运行”窗口&#xff0c;输入以下命令后回车。 %localappdata%\Packages\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\LocalState\Assets 2、依次点击【查看】【显示】&#xff0c;勾选【隐藏的项目】&#xff0c;然后按【CtrlA】全部…

Protobuf序列化协议使用指南

简介 在本篇博客中&#xff0c;将会介绍protobuf的理论及使用方法。该文章仅做分享使用及自我复习使用&#xff0c;使用的图片来自百度&#xff0c;无法找到作者&#xff0c;如若侵权请联系删除。 目录 简介 概述 1.protobuf是什么&#xff1f; 2.序列化/反序列是什么&…

83,【7】BUUCTF WEB [MRCTF2020]你传你[特殊字符]呢

进入靶场 图片上这个人和另一道题上的人长得好像 54&#xff0c;【4】BUUCTF WEB GYCTF2020Ezsqli-CSDN博客 让我们上传文件 桌面有啥传啥 /var/www/html/upload/344434f245b7ac3a4fae0a6342d1f94a/123.php.jpg 成功后我就去用蚁剑连了&#xff0c;连不上 看了别的wp知需要…

低代码系统-产品架构案例介绍、轻流(九)

轻流低代码产品定位为零代码产品&#xff0c;试图通过搭建来降低企业成本&#xff0c;提升业务上线效率。 依旧是从下至上&#xff0c;从左至右的顺序 名词概述运维层底层系统运维层&#xff0c;例如上线、部署等基础服务体系内置的系统能力&#xff0c;发消息、组织和权限是必…

Linux——网络(udp)

文章目录 目录 文章目录 前言 一、upd函数及接口介绍 1. 创建套接字 - socket 函数 2. 绑定地址和端口 - bind 函数 3. 发送数据 - sendto 函数 4. 接收数据 - recvfrom 函数 5. 关闭套接字 - close 函数 二、代码示例 1.服务端 2.客户端 总结 前言 Linux——网络基础&#xf…

Nxopen 直齿轮参数化设计

NXUG1953 Visualstudio 2019 参考论文&#xff1a; A Method for Determining the AGMA Tooth Form Factor from Equations for the Generated Tooth Root Fillet //FullGear// Mandatory UF Includes #include <uf.h> #include <uf_object_types.h>// Internal I…

初阶数据结构:链表(二)

目录 一、前言 二、带头双向循环链表 1.带头双向循环链表的结构 &#xff08;1)什么是带头&#xff1f; (2)什么是双向呢&#xff1f; &#xff08;3&#xff09;那什么是循环呢&#xff1f; 2.带头双向循环链表的实现 &#xff08;1&#xff09;节点结构 &#xff08;2…

使用openwrt搭建ipsec隧道

背景&#xff1a;最近同事遇到了个ipsec问题&#xff0c;做的ipsec特性&#xff0c;ftp下载ipv6性能只有100kb, 正面定位该问题也蛮久了&#xff0c;项目没有用openwrt, 不过用了开源组件strongswan, 加密算法这些也是内核自带的&#xff0c;想着开源的不太可能有问题&#xff…

网络安全 | F5-Attack Signatures详解

关注&#xff1a;CodingTechWork 关于攻击签名 攻击签名是用于识别 Web 应用程序及其组件上攻击或攻击类型的规则或模式。安全策略将攻击签名中的模式与请求和响应的内容进行比较&#xff0c;以查找潜在的攻击。有些签名旨在保护特定的操作系统、Web 服务器、数据库、框架或应…