神经网络问题之:梯度不稳定

news2025/1/10 16:59:00

        梯度不稳定是深度学习中,特别是在训练深度神经网络时常见的一个问题,其本质涉及多个方面。

一、根本原因

        梯度不稳定问题的根本原因在于深度神经网络的结构和训练过程中的一些固有特性。随着网络层数的增加,梯度在反向传播过程中会逐层累积变化,这种变化可能导致梯度消失或梯度爆炸。

图1 梯度在反向传播过程中会逐层累积

        1. 网络层数过多:深度神经网络通常包含多个隐藏层,每一层都会对梯度进行一定的变换。当层数过多时,这种变换可能会累积,导致梯度在反向传播过程中变得非常小(梯度消失)或非常大(梯度爆炸)。

        2. 激活函数的选择:某些非线性激活函数(如Sigmoid和Tanh)在输入值非常大或非常小时,其导数会趋近于零。这会导致梯度在反向传播过程中逐渐减小,进而引发梯度消失问题。相反,如果激活函数的导数在某些区域过大,则可能导致梯度爆炸。

        3. 权重初始化不当:权重的初始值对网络的训练有着深远的影响。如果权重初始化过大或过小,都可能导致梯度在反向传播过程中不稳定。权重初始化不当会使得网络中的梯度传播不稳定,影响训练效果。

几个基本概念和反向传播过程(Back Propagation)

1. 几个基本概念

        (1)前向传播:数据从输入层开始,经过隐藏层,最终到达输出层的过程。在这个过程中,每一层的输入都是前一层的输出,而每一层的输出则作为下一层的输入。

        (2)损失函数:用于量化模型预测值与实际值之间的差异。常见的损失函数包括均方误差、交叉熵损失等

        (3)梯度:损失函数相对于网络参数的偏导数,表示了损失函数在该点处相对于参数的变化率。

        2. 反向传播步骤

        (1)计算输出层的误差:根据损失函数,计算输出层的预测值与实际值之间的差异,得到输出层的误差。

        (2)逐层反向传播误差:从输出层开始,使用链式法则逐层计算每个隐藏层的误差。链式法则允许我们将输出层的误差反向传播到每一层,并计算每层的梯度。对于每一层,我们计算该层每个神经元的梯度,这个梯度表示了损失函数相对于该神经元权重的偏导数。

        (3)更新网络参数:使用计算得到的梯度,根据梯度下降算法或其他优化算法,更新网络的权重和偏置。梯度下降算法的更新公式为:new_parameter = old_parameter - learning_rate * gradient,其中learning_rate是学习率,用于控制更新的步长。

、具体表现

梯度不稳定问题在深度神经网络的训练过程中表现为以下几种情况:

        1. 梯度消失:在反向传播过程中,梯度值逐渐减小,导致靠近输入层的隐藏层权重更新非常缓慢甚至无法更新。这主要是由于激活函数在输入值较大或较小时梯度趋近于零,以及权重初始化不当等原因造成的。

        2. 梯度爆炸:与梯度消失相反,梯度爆炸指的是在反向传播过程中梯度值变得非常大,导致权重更新过大,网络不稳定。这可能发生在网络中存在数值不稳定的操作,例如矩阵乘法中的过大值,或者在循环神经网络(RNN)中存在长期依赖问题时。

        根据前文描述,可以将梯度不稳地的具体表现表示为:

        假设神经网络每次反向传播时,对权重矩阵W中各个权重值的更新(变化量大小)即梯度为\Delta W,某一层权重矩阵的梯度等于损失函数对该层权重矩阵的偏导数。(神经网络中不同层的权重矩阵的梯度更新\Delta W是不一致的,甚至当发生梯度消失/爆炸时,数量级上都是不一致的)

\Delta W=\frac{\Delta Loss}{\Delta W}

        按照梯度下降算法的更新公式,则上一层的权重矩阵W被更新的公式为:

W_{new}=W_{old}-\alpha W_{old}

        \alpha是学习率,它控制了整个神经网络梯度下降时的速度,该值过大过小都不好;而\Delta W\approx 0会造成梯度消失,\Delta W过大则会造成梯度爆炸。

、影响与解决方案

        梯度不稳定问题对深度神经网络的训练效果和性能有着显著的影响。它会导致网络无法从输入数据中学习有效的特征表示,从而降低模型的准确性和泛化能力。为了解决梯度不稳定问题,可以采取以下措施:

  1. 选择合适的激活函数:使用ReLU及其变体(如Leaky ReLU、Parametric ReLU等)作为激活函数,这些激活函数在输入为正时具有恒定的导数,有助于缓解梯度消失问题。
  2. 合理的权重初始化:采用合适的权重初始化方法(如He初始化或Glorot初始化)来设置网络权重的初始值,以减小梯度不稳定的风险。
  3. 引入批量归一化(Batch Normalization):在每一层的输入处进行归一化操作,使每一层的输入分布更加稳定。这有助于减小内部协变量偏移问题,提高模型的收敛速度和稳定性,同时也在一定程度上缓解梯度不稳定问题。
  4. 使用残差连接(Residual Connections):通过引入残差连接来构建残差网络(Residual Networks, ResNets)。残差连接允许梯度在反向传播时直接跳过某些层,从而缓解梯度消失的现象。
  5. 调整优化算法参数:合理设置优化算法的学习率、动量等参数,以避免权重更新过快或过慢而导致的梯度消失或梯度爆炸问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2245235.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

动态规划子数组系列一>等差数列划分

题目&#xff1a; 解析&#xff1a; 代码&#xff1a; public int numberOfArithmeticSlices(int[] nums) {int n nums.length;int[] dp new int[n];int ret 0;for(int i 2; i < n; i){dp[i] nums[i] - nums[i-1] nums[i-1] - nums[i-2] ? dp[i-1]1 : 0;ret dp[i…

RedHat系统配置静态IP

1、执行nmtui命令进入字符配置界面如下图所示 2、选择编辑连接进入 3、选择编辑进入后&#xff0c;将IPv4设置为手动模式后&#xff0c;选择显示后进行ip地址、网关、DNS的配置&#xff0c;配置完成后选择确定退出编辑 4、进入主界面后选择启用连接进入后&#xff0c;选择启用&…

batchnorm与layernorn的区别

1 原理 简单总结&#xff1a; batchnorn 和layernorm是在不同维度上对特征进行归一化处理。 batchnorm在batch这一维度上&#xff0c; 对一个batch内部所有样本&#xff0c; 在同一个特征通道上进行归一化。 举个例子&#xff0c; 假设输入的特征图尺寸为16x224x224x256&…

【Redis】持久化机制RDB与AOF

一、RDB RDB模式是就是将内存中的数据存储到磁盘中&#xff0c;等到连接断开的时候会进行持久化操作。但是如果服务器宕机&#xff0c;会导致这个持久化机制不会执行&#xff0c;但是内存中的文件会直接丢失。所以可以设置一个触发机制&#xff0c;save 60 1000 就是代表60秒 执…

JSON,事件绑定

文章目录 JSON事件绑定输入框input和div的内容返回获取dom元素数组还是单个对象for循环为什么要写const那一行&#xff0c;直接写 hobbys[index].checked true;可以吗const不是常量吗&#xff0c;为什么用const声明的element的属性值可以改变&#xff1f; 黑马学习笔记 JSON 定…

Kotlin Multiplatform 未来将采用基于 JetBrains Fleet 定制的独立 IDE

近期 Jetbrains 可以说是动作不断&#xff0c;我们刚介绍了 IntelliJ IDEA 2024.3 K2 模式发布了稳定版支持 &#xff0c;而在官方最近刚调整过的 Kotlin Multiplatform Roadmap 优先关键事项里&#xff0c;可以看到其中就包含了「独立的 Kotlin Multiplatform IDE&#xff0c;…

并行优化策略

并行优化策略汇总 并行优化策略 数据并行&#xff08;DP&#xff09; 将数据集分散到m个设备中&#xff0c;进行训练。得到训练数据后在进行allreduce操作。确保每个worker都有相同模型参数。 整体流程如下 若干块计算GPU&#xff0c;如图中GPU0~GPU2&#xff1b;1块梯度收集…

解决 Android 单元测试 No tests found for given includes:

问题 报错&#xff1a; Execution failed for task :testDebugUnitTest. > No tests found for given includes: 解决方案 1、一开始以为是没有给测试类加public修饰 2、然后替换 Test 注解的包可以解决&#xff0c;将 org.junit.jupiter.api.Test 修改为 org.junit.Tes…

知识见闻 - 数学: 均方根 Root Mean Square

What is Root Mean Square (RMS)? 在统计学上&#xff0c;均方根&#xff08;RMS&#xff09;是均方的平方根&#xff0c;而均方是一组数值的平方的算术平均数。均方根也称为二次均值&#xff0c;是指数为 2 的广义均值的一种特例。均方根也被定义为基于一个周期内瞬时值的平方…

寻找用户推荐人(考点:ifnull)【SQL+Pandas】

今天尝试刷一下力扣的sql面试题&#xff0c;这个写法我也是第一次见 题目是 我们需要在这个表中查出referee_id&#xff01;2的 正确写法是 select name from customer where ifnull(referee_id,0) ! 2 -- 不等于还可以这么写&#xff1a;<>

Java Database Connectivity (JDBC + Servlet)

Java Database Connectivity (JDBC)是一个Java API&#xff0c;用于与数据库进行连接和操作。通过JDBC&#xff0c;Java程序可以与各种关系型数据库进行通信&#xff0c;执行SQL查询、更新数据等操作。 一、Java连接数据库两种方式 ​​​​​ ​​ 二、Java中…

【Python爬虫实战】深入解析 Scrapy 爬虫框架:高效抓取与实战搭建全指南

&#x1f308;个人主页&#xff1a;易辰君-CSDN博客 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、Srapy简介 &#xff08;一&#xff09;什么是Srapy &#xff08;二&#xff09;Scrapy 的设计目标 …

编程之路,从0开始:动态内存管理

Hello&#xff0c;大家好&#xff01;很高兴我们又见面啦&#xff01;给生活添点passion&#xff0c;开始今天的编程之路。 我们今天来学习C语言中的动态内存管理。 目录 1、为什么要有动态内存管理&#xff1f; 2、malloc和free &#xff08;1&#xff09;malloc函数 &…

初始Python篇(4)—— 元组、字典

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a; Python 目录 元组 相关概念 元组的创建与删除 元组的遍历 元组生成式 字典 相关概念 字典的创建与删除 字典的遍历与访问 字典…

d3-ease 的各种方法和示例

D3.js中的d3-ease模块提供了多种缓动函数&#xff0c;用于实现平滑的动画过渡效果。这些缓动函数通过扭曲时间控制动画中运动的方法&#xff0c;使得动画更加自然和流畅。以下是D3中常见的一些ease方法和示例代码&#xff1a; 线性缓动&#xff08;linear&#xff09;&#xff…

HTML5拖拽API学习 托拽排序和可托拽课程表

文章目录 前言拖拽API核心概念拖拽式使用流程例子注意事项综合例子&#x1f330; 可拖拽课程表拖拽排序 前言 前端拖拽功能让网页元素可以通过鼠标或触摸操作移动。HTML5 提供了标准的拖拽API&#xff0c;简化了拖放操作的实现。以下是拖拽API的基本使用指南&#xff1a; 拖拽…

Throwable、IO流、Java虚拟机

Error和Exception stream结尾都是字节流&#xff0c;reader和writer结尾都是字符流 两者的区别就是读写的时候一个是按字节读写&#xff0c;一个是按字符。 实际使用通常差不多。 在读写文件需要对内容按行处理&#xff0c;比如比较特定字符&#xff0c;处理某一行数据的时候一…

lanqiao OJ 364 跳石头

这个题目的条件是移动的石头数量给定&#xff0c;但是最小移动距离的最大值我们不知道&#xff0c;所以要通过mid来“猜测”。如果当前的mid需要移动的最小石头数量超过给定数&#xff0c;则mid不成立&#xff0c;需要缩小&#xff0c;反之则增大mid&#xff0c;直至找到一个最…

「一」HarmonyOS端云一体化概要

关于作者 白晓明 宁夏图尔科技有限公司董事长兼CEO、坚果派联合创始人 华为HDE、润和软件HiHope社区专家、鸿蒙KOL、仓颉KOL 华为开发者学堂/51CTO学堂/CSDN学堂认证讲师 开放原子开源基金会2023开源贡献之星 「目录」 「一」HarmonyOS端云一体化概要 「二」体验HarmonyOS端云一…

Shell基础(7)

声明&#xff01; 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团…