论文阅读——Intrusion detection systems using longshort‑term memory (LSTM)

news2025/1/12 8:46:06

一.基本信息

论文名称:Intrusion detection systems using longshort‑term memory (LSTM)

中文翻译:基于长短期记忆(LSTM)的入侵检测系统

DOI:10.1186/s40537-021-00448-4

作者:FatimaEzzahra Laghrissi1* , Samira Douzi2*, Khadija Douzi1* and Badr Hssina1*

发表年份:2021年

发表期刊:《Journal Of Big Data》

中科院分区:计算机科学2区

JCR分区:Q1

影响因子:IF(5):12.4

二.论文阅读

1.研究背景

1.网络威胁日益严重,入侵检测技术越来越关键。

2.目前许多入侵检测系统基于机器学习模型,但是经典的机器学习模型无法解决实时性问题。

3.深度学习模型在入侵检测方面的应用有所增加

2.主要贡献

在KDD99数据集上,对三个模型(即LSTM,LSTM-PCA,LSTM-MI)进行二分类和多分类的测试

3.研究过程 

A.数据集的阐述:

      1.  KDD99 dataset:53个特征;4个攻击大类;
      2. 存在的问题:攻击记录的数量远远大于正常记录

B.数据预处理:

        二分类将标签分为两种类别:正常和攻击;接着 随机抽样来缓解数据集存在的问题
        多分类分成 三类 :正常攻击,拒绝服务攻击和R2L类别中的所有其他攻击

C.数据降维 

PCA方法:
        原数据的特征是53个,用PCA方法降维, 主成分1,2 或者 主成分1,2,3 即可描述重要特征(后面实验对比了2个主成分和3个主成分的效果)
                            

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

MI方法:
        1.定义: 互信息(Mutual Information )是一种用来计算两个变量之间统计依赖性的方法,这里的两个变量是“特征”与“目标值/标签”, 某个特征的互信息分数越高,说明该特征对标签结果的影响更大

        2.本实验的设置:

本实验的选择: 本实验分别用了4号特征和其余10个特

D.数据集的划分 

60%的预处理后的数据作为训练集;20%作为验证集;20%作为测试集

E.分类模型的设置

①分类模型:LSTM
②内部结构和参数设置:
        ▶整体模型及参数:

        

        ▶LSTM的结构:

4.研究结果 

性能评价指标1:准确度,召回率,精确度,F1分数

结果:

对于二分类和多分类来比较:二分类的效果好

对于三种模型来比较:LSMT-PCA效果最好

对于具体模型来说:

        LSTM-PCA:在选择两个主成分时效果更好

        LSTM-MI:选择4号特征比选择10个特征效果好

--------------------------------------------------------------------------------------------------------------------------

性能评价指标2:处理时间 

结果:

二分类比多分类快;LSTM-MI比其他模型快;添加更多的特征会增加处理时间

--------------------------------------------------------------------------------------------------------------------------

LSTM-PCA的最终评价:

        ①在 准确率和敏感度上超越其他模型。

        ②使用更少的特征 实现了 高效性能 ,适合 大规模实时环境
        ③模型具有通用性、高效性,在入侵检测系统中的潜在实用价值

5.总结

作者提出的 LSTM 模型能够有效区分正常网络流量和攻击流量。除此之外,模型结合主成分分析(PCA)和互信息作为降维方法。实验结果表明,基于 PCA 的模型(特别是使用2个主成分)在二分类和多分类任务中都表现最好,准确率分别达到 99.44% 和 99.39%。模型的准确性和敏感性优于其他比较方法,且使用少量特征(2个)使得模型训练更加高效,占用更少资源。

6.未来展望

研究LSTM的多种变体,以及其他神经网络算法和其他特征选择算法。

7.整个论文的思维导图

!!!声明!!!

这篇文章仅用于本人的学术学习,侵权即删,转载或学习请标明原论文的信息,正确引用!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2244762.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【行之有效】实证软件工程研究方法

【行之有效】实证软件工程研究方法 一、实证研究二、实证软件工程2.1 系统化文献评价2.2 调查研究2.2.1 数据收集2.2.2 抽样 2.3 案例研究2.3 实证研究效度 一、实证研究 实证研究(Empirical Research)方法是一种与规范研究(Normative Resea…

大数据挖掘期末复习

大数据挖掘 数据挖掘 数据挖掘定义 技术层面: 数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中、人们事先不知道的、但又潜在有用的信息的过程。 数据准备环节 数据选择 质量分析 数据预处理 数据仓库 …

河道水位流量一体化自动监测系统:航运安全的护航使者

在广袤的水域世界中,航运安全始终是至关重要的课题。而河道水位流量一体化自动监测系统的出现,如同一位强大的护航使者,为航运事业的稳定发展提供了坚实的保障。 水位传感器:负责实时监测河道的水位变化。这些传感器通常采用先进的…

【C++】深入理解 C++ 中的继承进阶:多继承、菱形继承及其解决方案

个人主页: 起名字真南的CSDN博客 个人专栏: 【数据结构初阶】 📘 基础数据结构【C语言】 💻 C语言编程技巧【C】 🚀 进阶C【OJ题解】 📝 题解精讲 目录 C继承机制详解与代码示例📌1. 继承的基本概念📌 2.…

根据条件 控制layui的table的toolbar的按钮 显示和不显示

部分代码&#xff1a; <!-----查询条件-----> <input type"date" id"StartDate" onchange"PageList()" /> <input type"date" id"EndDate" onchange"PageList()" /><!-----表格Table-----&…

net某高校社交学习平台的设计与实现

摘 要 高校社交学习平台是一个融合了社交网络特性的在线学习交流系统&#xff0c;旨在促进高校学生之间的信息共享与学习互动。该平台通过提供学习资料、学习视频和学习交流等功能&#xff0c;支持发布学习动态、参与知识问答、并实时追踪学习进度。为学生提供一个全面且便捷的…

5-对象的访问权限

对象的访问权限知识点 对象的分类 在数据库中&#xff0c;数据库的表、索引、视图、缺省值、规则、触发器等等、都可以被称为数据库对象&#xff0c;其中对象主要分为两类 1、模式(schema)对象&#xff1a;模式对象可以理解为一个存储目录、包含视图、索引、数据类型、函数和…

如何在vscode 中打开新文件不覆盖上一个窗口

在 VSCode 中&#xff0c;如果你单击文件时出现了覆盖Tab的情况&#xff0c;这通常是因为VSCode默认开启了预览模式。在预览模式下&#xff0c;单击新文件会覆盖当前预览的文件Tab。为了解决这个问题&#xff0c;你可以按照以下步骤进行操作 1.打开VSCode&#xff1a;启动你的…

【网络系统管理】Centos7——配置主从mariadb服务器案例(下半部分)

【网络系统管理】Centos7——配置主从mariadb服务器案例-CSDN博客 接上个文档&#xff0c;我们已经完成了主服务器创建数据库备服务器可以看到 一、在DBMS2查看信息 File&#xff0c;Position这两个字段的数据要记好&#xff0c;等一下需要用到 show master status; 二、在…

C#编写的日志记录组件 - 开源研究系列文章

以前编写过一个日志记录组件的博文&#xff0c;这次发布一个修改过的完善版本。 1、 项目目录&#xff1b; 2、 源码介绍&#xff1b; 1) 实现&#xff1b; 2) 使用&#xff1b; 后面的参数为级别设置&#xff0c;只有大于这个级别的才进行日志记录&#xff0c;限制了日志记录的…

react 如何修改弹出的modal的标题

原来标题的样子&#xff1a; 修改为&#xff1a; 实现方式&#xff1a; <Modal title<span>股价趋势/{this.state.pccode}</span> visible{this.state.isPriceModalOpen} style{{ top: 20 }} width{1320} height{400} footer{null} onCancel{()>this.hideMo…

学习threejs,对模型多个动画切换展示

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言1.1 ☘️THREE.AnimationMixer 动画…

笔记01----Transformer高效语义分割解码器模块DEPICT(即插即用)

学习笔记01----即插即用的解码器模块DEPICT 前言源码下载DEPICT实现实验 前言 文 章 标 题&#xff1a;《Rethinking Decoders for Transformer-based Semantic Segmentation: Compression is All You Need》 当前的 Transformer-based 方法&#xff08;如 DETR 和其变体&…

layui合并table相同内的行

<table border"1" id"table1" class"layui-table"><thead><tr><th><b>姓名</b></th><th><b>项目</b></th><th><b>任务</b></th><th><b>…

【大模型】大模型RAG检索增强生成技术使用详解

目录 一、前言 二、RAG技术介绍 2.1 RAG是什么 2.2 RAG工作原理 2.3 RAG优势 2.4 RAG应用场景 三、在线大模型平台RAG技术使用 3.1 阿里百炼平台 3.1.1 创建知识库 3.1.2 导入文档数据 3.1.3 文档数据解析 3.1.4 查看数据 3.2 百度文心智能体 3.2.1 创建知识库 3…

人工智能与SEO优化中的关键词策略解析

内容概要 在当今数字化快速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;与搜索引擎优化&#xff08;SEO&#xff09;的结合正变得愈发重要。关键词策略是SEO优化的一项基础工作&#xff0c;它直接影响到网站的可见性和流量。通过运用智能算法&#xff0c;企业能…

【WRF-Urban】WRF 4.3版本中城市模块更新总结

【WRF-Urban】WRF 4.3版本中城市模块更新总结 WRF 4.3 版本中城市模块更新1. 局地气候区&#xff08;LCZ&#xff09;的引入WRF 查找表的修改&#xff1a;如何启用 11 类 LCZ 分类&#xff1a; 2. 屋顶缓解策略与建筑材料渗透性3. 新的建筑物阻力系数处理 使用LCZ的WRF-Urban模…

【Apache Paimon】-- 6 -- 清理过期数据

目录 1、简要介绍 2、操作方式和步骤 2.1、调整快照文件过期时间 2.2、设置分区过期时间 2.2.1、举例1 2.2.2、举例2 2.3、清理废弃文件 3、参考 1、简要介绍 清理 paimon &#xff08;表&#xff09;过期数据可以释放存储空间&#xff0c;优化资源利用并提升系统运行效…

第二十周:机器学习

目录 摘要 ABSTRACT 一、吴恩达机器学习exp2——逻辑回归 1、logistic函数 2、数据预处理 3、损失函数 4、梯度下降 5、设定评价指标 6、决策边界 7、正则化 二、动手深度学习pytorch——数据预处理 1、数据集读取 2、缺失值处理 3、转换为张量格式 总结 摘要…

反转链表、链表内指定区间反转

反转链表 给定一个单链表的头结点pHead&#xff08;该头节点是有值的&#xff0c;比如在下图&#xff0c;它的val是1&#xff09;&#xff0c;长度为n&#xff0c;反转该链表后&#xff0c;返回新链表的表头。 如当输入链表{1,2,3}时&#xff0c;经反转后&#xff0c;原链表变…