C++builder中的人工智能(17):神经网络中的自我规则非单调(Mish)激活函数

news2025/1/11 9:54:28

在这篇文章中,我们将探讨自我规则非单调激活函数——Mish在神经网络中的应用。了解Mish函数的工作原理,将有助于您在使用C++ IDE构建C++应用程序时更加得心应手。

目录

  • 神经网络中的激活函数是什么?
  • 能在C++中创建激活函数吗?
  • 自我规则非单调(Mish)激活函数是什么?
  • 如何在C++中编写Mish激活函数?
  • 有没有一个简单的C++ ANN示例使用Mish激活函数?

神经网络中的激活函数是什么?

激活函数(phi()),也称为转移函数或阈值函数,它根据净输入函数的给定值(sum)确定激活值(a = phi(sum))。在这里,sum是它们权重中的信号之和,激活函数是这个和的新值,具有给定的函数或条件。换句话说,激活函数是将所有加权信号的和转换为该信号的新激活值的方法。有不同类型的激活函数,常用的包括线性(恒等)、双极性和逻辑(sigmoid)函数。

能在C++中创建激活函数吗?

在C++中(以及大多数编程语言),您可以创建自己的激活函数。注意,sum是净输入函数的结果,它计算所有加权信号的和。这里,人工神经元(输出值)的激活值可以通过激活函数如下所示,

通过使用这个sum净输入函数值和phi()激活函数,我们可以编写phi()函数。让我们看看C++中的一些激活函数;现在让我们看看如何使用Mish函数作为这个示例公式,

自我规则非单调(Mish)激活函数是什么?

自我规则非单调(Mish)激活函数是受Swish激活函数启发的平滑、连续、自我规则、非单调激活函数。这个函数由Diganta Misra在2019年发表的“Mish: A Self Regularized Non-Monotonic Activation Function”中提出。

https://i0.wp.com/learncplusplus.org/wp-content/uploads/2021/05/Mish-1024x633.png?resize=750%2C464&ssl=1 图片来源:Mish A Self Regularized Non Monotonic Activation Function by Diganta Misra 2019

根据这项研究,“Mish利用自我门控属性,其中非调制输入与输入的非线性函数的输出相乘。由于保留了少量的负信息,Mish通过设计消除了Dying ReLU现象所需的先决条件。这一特性有助于更好的表达性和信息流动。Mish无界,避免了饱和,这通常会因为梯度接近零而导致训练速度大幅减慢。Mish在下方有界也是有利的,因为它产生了强烈的规则效应。与ReLU不同,Mish是连续可微的,这是一个可取的特性,因为它避免了奇异性,因此在执行基于梯度的优化时避免了不希望的副作用。”

我们之前解释了softplus()激活函数。Mish激活函数可以使用softplus()定义如下,

因此,Mish激活函数可以数学定义如下,

作者比较了Mish、ReLU、SoftPlus和Swish激活函数的输出,还比较了Mish和Swish的第一和第二导数。

Mish函数可以在C++中编写如下,

double phi(double sum) {
    return(sum * std::tanh(std::ln(1 + std::exp(sum)))); // Mish函数
}

一个简单的C++ ANN示例使用自我规则非单调(Mish)激活函数

我们可以简单地将这个mish函数应用到我们的通用简单ANN示例中,如下所示,

#include <iostream>
#define NN 2   // 神经元数量

class Tneuron { // 神经元类
public:
    double a;       // 每个神经元的活动值
    double w[NN+1]; // 神经元之间连接的权重

    Tneuron() {
        a = 0;
        for (int i = 0; i < NN; i++) w[i] = -1;  // 如果权重是负数,则表示没有连接
    }

    // 定义输出神经元的激活函数(或阈值)
    double activation_function(double sum) {
        return(sum * std::tanh(std::ln(1 + std::exp(sum)))); // Mish函数
    }
};

Tneuron ne[NN+1]; // 神经元对象

void fire(int nn) {
    double sum = 0;
    for (int j = 0; j < NN; j++) {
        if (ne[j].w[nn] > 0) sum += ne[j].a * ne[j].w[nn];
    }
    ne[nn].a = ne[nn].activation_function(sum);
}

int main() {
    // 定义两个输入神经元(a0, a1)和一个输出神经元(a2)的活动值
    ne[0].a = 0.0;
    ne[1].a = 1.0;
    ne[2].a = 0;

    // 定义来自两个输入神经元到输出神经元(0到2和1到2)的信号权重
    ne[0].w[2] = 0.6;
    ne[1].w[2] = 0.4;

    // 激发我们的人工神经元活动,输出将是
    fire(2);
    printf("%10.6f\n", ne[2].a);
    getchar();
    return 0;
}

这个示例展示了如何在C++中使用Mish激活函数来模拟一个简单的人工神经网络。通过这种方式,你可以构建更复杂的神经网络模型,并在C++应用中实现深度学习技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2237678.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

华为eNSP实验:IP Source Guard

一&#xff1a;IP Source Guard: IP Source Guard&#xff08;简称IPSG&#xff09;是一种基于二层接口的源IP地址过滤技术&#xff0c;用于防止恶意主机伪造合法主机的IP地址进行网络攻击。以下是对IP Source Guard的详细解析&#xff1a; 基本概念&#xff1a; IP Source Gu…

Git进阶(十八):git rebase详解

文章目录 一、前言二、rebase 图解三、应用示例四、重建提交历史五、rebase VS merge六、拓展阅读 一、前言 rebase 使用方法 git rebase [基节点] git rebase [基节点] [待变基节点]rebase后面的参数可以是两个&#xff0c;也可以是一个&#xff0c;当rebase为一个参数的时…

【笔记】扩散模型(九):Imagen 理论与实现

论文链接&#xff1a;Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding 非官方实现&#xff1a;lucidrains/imagen-pytorch Imagen 是 Google Research 的文生图工作&#xff0c;这个工作并没有沿用 Stable Diffusion 的架构&#xff0c;而是级…

华夏风物 3.2.0 | 中国风物志,记录各地特产、美食、风景,旅游吃货必备

华夏风物是一款记录中国各地风物的App&#xff0c;类似于一本中国“风物志”。它记录了各地的特产、美食、风景&#xff0c;为用户提供了一个了解和探索中国文化的窗口。该应用的社区氛围非常真实&#xff0c;用户可以发现许多家乡的特色小吃和传统手艺。许多帖子由当地人发布&…

BIST(Built-in Self-Test,内建自测试)学习笔记

参考资料: 内建自测试&#xff08;Built-in Self-Test&#xff0c;简称BIST&#xff09;详解_built in self test-CSDN博客 芯片测试术语 &#xff0c;片内测试(BIST)&#xff0c;ATE测试-CSDN博客 可能是DFT最全面的介绍--BIST - 知乎 (zhihu.com) 汽车功能安全--TC3xx LB…

【Ubuntu24.04】从双系统到虚拟机再到单系统的故事

故事 在大学前期&#xff0c;我使用Ubuntu系统都是为了学习一些命令或者其它Linux的东西&#xff0c;对性能的要求不高&#xff0c;所以选择了虚拟机&#xff0c;后来为了做毕设&#xff0c;选择安装了Ubuntu20.04双系统&#xff0c;因为虚拟机实在带不动&#xff0c;那时我的主…

AntFlow一款开源免费且自主可控的仿钉钉工作流引擎

在现代企业管理中&#xff0c;流程审批的高效性直接影响到工作的流畅度与生产力。最近&#xff0c;我发现了一个非常有趣的项目——AntFlow。这个项目不仅提供了一个灵活且可定制的工作流平台&#xff0c;还能让用户以可视化的方式创建和管理审批流程。 如果你寻找一个快速集成…

科学计算服务器:如何计算算力?如何提升科学研究效率?

在现代科学研究的舞台上&#xff0c;科学计算服务器犹如一位强大的幕后英雄&#xff0c;为复杂科学计算任务的攻克提供着坚实支撑。准确计算其算力并充分发挥优势&#xff0c;对提升科学研究效率意义非凡。 服务器的中央处理器&#xff08;CPU&#xff09;计算力。在科学计算服…

Java String字符串

Java字符串通常被视为一种数据类型&#xff0c;但由于它们按顺序存储字符类型的元素&#xff0c;类似于数组&#xff0c;因此也常被视为数据结构。在本文中&#xff0c;我们将通过以下大纲简明地了解有关Java字符串的所有内容。 什么是Java字符串&#xff1f;如何创建Java字符…

leetcode25:k个一组链表反转

给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那么请将最后剩余的节点保持原有顺序。 你不能只是单纯的改变节点内部的值…

《⼆叉搜索树》

《⼆叉搜索树》 1. ⼆叉搜索树的概念2. ⼆叉搜索树的性能分析3 二叉树的功能说明及实现3.1 ⼆叉搜索树的插⼊3.2 ⼆叉搜索树的查找3.3 ⼆叉搜索树的删除 4二叉搜索树的实现代码5 ⼆叉搜索树key和key/value使⽤场景5.1 key搜索场景&#xff1a;5.2 key/value搜索场景&#xff1a…

势不可挡 创新引领 | 生信科技SOLIDWORKS 2025新品发布会·苏州站精彩回顾

2024年11月01日&#xff0c;由生信科技举办的SOLIDWORKS 2025新产品发布会在江苏苏州圆满落幕。现场邀请到制造业的专家学者们一同感受SOLIDWORKS 2025最新功能&#xff0c;探索制造业数字化转型之路。 在苏州站活动开场&#xff0c;达索系统专业客户事业部华东区渠道经理马腾飞…

Spark 程序开发与提交:本地与集群模式全解析

Spark 的介绍与搭建&#xff1a;从理论到实践-CSDN博客 Spark 的Standalone集群环境安装与测试-CSDN博客 PySpark 本地开发环境搭建与实践-CSDN博客 目录 一、本地开发与远程提交测试 &#xff08;一&#xff09;问题背景 &#xff08;二&#xff09;解决方案 集群环境准…

童装类目电商代运营公司——品融电商

童装类目电商代运营公司——品融电商 随着电商行业的快速发展&#xff0c;童装类目已成为市场中极具潜力的细分领域之一。消费者对童装的需求不仅限于基本穿着功能&#xff0c;更倾向于选购具有设计感、安全性和舒适度的产品。童装类目涵盖婴儿服、儿童套装、家居服、户外服饰等…

利用pythonstudio写的PDF、图片批量水印生成器,可同时为不同读者生成多组水印

现在很多场合需要将PDF或图片加水印&#xff0c;本程序利用pythonstudio编写。 第一步 界面 其中&#xff1a; LstMask:列表框 PopupMenu:PmnMark LstFiles:列表框 PopupMenu:PmnFiles OdFiles:文件选择器 Filter:PDF文件(.PDF)|.PDF|图像文件(.JPG)|.JPG|图像文件(.png…

PDF模板制作与填充(Java)

1.PDF模板制作 准备原始模板 准备一个原始PDF模板&#xff0c;可以编辑好Word&#xff0c;预留出要填充的部分&#xff0c;再转换成PDF格式。 设置表单域 用任意PDF编辑器打开PDF模板文件&#xff0c;设置表单域&#xff0c;下面以WPS为例&#xff1a; 拖动文本域到需要填充的…

kafka中节点如何服役和退役

服役新节点 1&#xff09;新节点准备 &#xff08;1&#xff09;关闭 bigdata03&#xff0c;进行一个快照&#xff0c;并右键执行克隆操作。 &#xff08;2&#xff09;开启 bigdata04&#xff0c;并修改 IP 地址。 vi /etc/sysconfig/network-scripts/ifcfg-ens33修改完记…

笔记本怎么开启TPM2.0_笔记本开启TPM2.0教程(不同笔记本开启tpm2.0方法)

在win11最低要求是提示&#xff0c;电脑必须满足 TPM 2.0&#xff0c;并开需要开启TPM 才能正常安装windows11系统&#xff0c;有很多笔记本的用户问我&#xff0c;笔记本怎么开启tpm功能呢&#xff1f;下面小编就给大家详细介绍一下笔记本开启tpm功能的方法。 如何确认你笔记本…

【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch

文章目录 一、项目介绍二、项目实战2.1、搭建环境2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集 2.2、环境配置2.3、模型预测 U-Net是一种用于生物医学图像分割的卷积神经网络架构&#xff0c;最初由Olaf Ronneberger等人于2015年提出。 论文&#xff1a; U-Net: Con…

开源竞争-大数据项目期末考核

开源竞争&#xff1a; 自己没有办法完全掌握技术的时候就开源这个技术&#xff0c;培养出更多的技术依赖&#xff0c;让更多人完善你的技术&#xff0c;那么这不就是在砸罐子吗&#xff1f;一个行业里面总会有人砸罐子的&#xff0c;你不如先砸还能听个想。 客观现实&#xf…