动态规划 之 路径问题 算法专题

news2024/11/26 0:42:12

一. 不同路径

不同路径

  1. 状态表示
    dp[i][j] 表示走到[i][j]位置, 有几种不同的路径
  2. 状态转移方程
    以离[i][j] 最近的位置划分问题
    1.从[i - 1][j] 到[i][j], 到[i][j]位置的不同路径数 就是和 到[i - 1][j]位置的不同路径数相同, 即dp[i][j] = dp[i - 1][j]
    2.从[i][j - 1] 到[i][j], 到[i][j]位置的不同路径数 就是和 到[i ][j - 1]位置的不同路径数相同, 即dp[i][j] = dp[i][j - 1]
  • dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
  1. 初始化
    使用优化的思想进行初始化, 添加虚拟节点
    在第一行和第一列的位置填表时会发生越界
    所以需要添加一行一列
    在这里插入图片描述
    我们只需要像上表一样初始化虚拟节点, 就可以正确的进行填表

  2. 填表顺序
    从上往下 从左往右

  3. 返回值
    返回dp[m][n]

class Solution {
    public int uniquePaths(int m, int n) {
        //1. 创建表
        //2. 初始化
        //3. 填表
        //4. 返回值
        int[][] dp = new int[m + 1][n + 1];
      
        dp[0][1] = 1;
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++){
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m][n];
    }
}

二. 不同路径II

不同路径II

  1. 状态表示
    dp[i][j] 表示走到[i][j]位置, 有几种不同的路径
  2. 状态转移方程
    以离[i][j] 最近的位置划分问题
    1.从[i - 1][j] 到[i][j], 到[i][j]位置的不同路径数 就是和 到[i - 1][j]位置的不同路径数相同, 即dp[i][j] = dp[i - 1][j]
    2.从[i][j - 1] 到[i][j], 到[i][j]位置的不同路径数 就是和 到[i ][j - 1]位置的不同路径数相同, 即dp[i][j] = dp[i][j - 1]
    但是如果此时的[i][j]是障碍物, 那么到达这个位置的路径数就为0, 所以dp[i][j] = 0
  • dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
  1. 初始化
    使用优化的思想进行初始化, 添加虚拟节点
    在第一行和第一列的位置填表时会发生越界
    所以需要添加一行一列
    在这里插入图片描述
    我们只需要像上表一样初始化虚拟节点, 就可以正确的进行填表

  2. 填表顺序
    从上往下 从左往右

  3. 返回值
    返回dp[m][n]

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
         //1. 创建表
        //2. 初始化
        //3. 填表
        //4. 返回值
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m + 1][n + 1];
  
        dp[0][1] = 1;
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++){
                if(obstacleGrid[i - 1][j - 1] == 1) {
                    dp[i][j] = 0;
                }else{
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
        }
        return dp[m][n];
    }
}

三. 珠宝的最高价值

珠宝的最高价值

  1. 状态表示
    dp[i][j] 表示走到[i][j]位置, 获得的珠宝的最高价值是多少
  2. 状态转移方程
    以离[i][j] 最近的位置划分问题
    到[i][j]位置的获得的珠宝的最高价值 就是到[i - 1][j]位置的获得的珠宝的最高价值 与 到[i][j - 1]位置的获得的珠宝的最高价值 的最大值, 然后加上[i][j]位置本来的价值
  • dp[i][j] = max(dp[i - 1][j] + dp[i][j - 1]) + frame[i - 1][j - 1](采用优化的思想, 与原下标对应要 - 1)
  1. 初始化
    使用优化的思想进行初始化, 添加虚拟节点
    在第一行和第一列的位置填表时会发生越界
    所以需要添加一行一列
    我们只需要将虚拟节点都设为0即可
  2. 填表顺序
    从上往下 从左往右
  3. 返回值
    返回dp[m][n]
class Solution {
    public int jewelleryValue(int[][] frame) {
        //1. 创建dp
        //2. 初始化
        //3. 填表
        //4. 返回值
        int m = frame.length;
        int n = frame[0].length;
        int[][] dp = new int[m + 1][n + 1];
   
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++){
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + frame[i - 1][j - 1];
            }
        }
        return dp[m][n];
    }
}

四. 下降路径最小和

下降路径最小和

  1. 状态表示
    dp[i][j] 表示走到[i][j]位置, 路径的最小和
  2. 状态转移方程
    以离[i][j] 最近的位置划分问题
    到[i][j]位置的路径的最小和 就是到[i - 1][j - 1]位置路径的最小和 与 到[i - 1][j]位置路径的最小和 与 [i - 1][j + 1]位置路径的最小和 的最小值, 然后加上[i][j]位置本来的值
  • dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i - 1][j]), dp[i - 1][j + 1]) + matrix[i - 1][j - 1](采用优化的思想, 与原下标对应要 - 1)
  1. 初始化
    使用优化的思想进行初始化, 添加虚拟节点
    在第一行和第一列和最后一列的位置填表时会发生越界
    所以需要添加一行两列
    我们需要将虚拟节点都设为最大值, 防止对原来的数进行干扰
  2. 填表顺序
    从上往下 从左往右
  3. 返回值
    返回最后一行中的最小值
class Solution {
    public int minFallingPathSum(int[][] matrix) {
        //1. 创建dp
        //2. 初始化
        //3. 填表
        //4. 返回值
        int n = matrix.length;
        int[][] dp = new int[n + 1][n + 2];
        for(int i = 1; i <= n; i++){
            dp[i][0] = Integer.MAX_VALUE;
            dp[i][n + 1] = Integer.MAX_VALUE;
        }

        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n; j++){
                dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i - 1][j]), dp[i - 1][j + 1]) + matrix[i - 1][j - 1];
            }
        }
        int min = Integer.MAX_VALUE;
        for(int j = 1; j <= n; j++){
            min = Math.min(min, dp[n][j]);
        }
        return min;
    }
}

五. 最小路径和

最小路径和

  1. 状态表示
    dp[i][j] 表示走到[i][j]位置, 路径的最小和
  2. 状态转移方程
    以离[i][j] 最近的位置划分问题
    到[i][j]位置的路径的最小和 就是到[i - 1][j]位置路径的最小和 与 [i][j - 1]位置路径的最小和 的最小值, 然后加上[i][j]位置本来的值
  • dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1](采用优化的思想, 与原下标对应要 - 1)
  1. 初始化
    使用优化的思想进行初始化, 添加虚拟节点
    在第一行和第一列的位置填表时会发生越界
    所以需要添加一行一列
    我们需要将虚拟节点设为最大值, 但是[0][1]位置的值要设为0, 防止对原来的数进行干扰
  2. 填表顺序
    从上往下 从左往右
  3. 返回值
    dp[m][n]
class Solution {
    public int minPathSum(int[][] grid) {
        // 1. 创建dp
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 0; i <= m; i++) {
            dp[i][0] = Integer.MAX_VALUE;
        }
        for (int j = 0; j <= n; j++) {
            dp[0][j] = Integer.MAX_VALUE;
        }
        dp[0][1] = 0;
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
            }
        }
        return dp[m][n];
    }
}

六. 地下城游戏

地下城游戏

  1. 状态表示
    dp[i][j] 如果表示走到[i][j]位置, 所需要的最小血量, 是没办法完成这道题的, 因为, 每走一步, 所需的最小血量都在更新
    所以dp[i][j] 表示从[i][j]位置开始, 所需要的最小血量
  2. 状态转移方程
    以离[i][j] 最近的位置划分问题
    1.[i][j]位置所需要的最小血量 + [i][j]位置需要加或减的血量 一定是要 >= 到[i + 1][j]位置所需要的最小血量, 才能保证走下一个位置的时候不会死, 所以dp[i][j] = dp[i + 1][j] - 原表的[i][j]
    2.[i][j]位置所需要的最小血量 + [i][j]位置需要加或减的血量 一定是要 >= 到[i][j + 1]位置所需要的最小血量, 才能保证走下一个位置的时候不会死, 所以dp[i][j] = dp[i][j + 1] - 原表的[i][j]
  • dp[i][j] = Math.min(dp[i + 1][j], dp[i][j + 1]) - 原表的[i][j]
    但是我们得出的dp[i][j] 必须是>0的, 如果<0, 就设为1, 所需要的最低血量
  1. 初始化
    使用优化的思想进行初始化, 添加虚拟节点
    在最后一行和最后一列的位置填表时会发生越界
    所以需要添加一行一列
    我们需要将虚拟节点设为最大值, 但是[m][n - 1]位置 和[m - 1][n]位置 的值要设为1, 所需要的最低血量
  2. 填表顺序
    从下往上 从右往左
  3. 返回值
    dp[0][0]
class Solution {
    public int calculateMinimumHP(int[][] dungeon) {
          // 1. 创建dp
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int m = dungeon.length;
        int n = dungeon[0].length;
        int [][] dp = new int[m + 1][n + 1];
        for(int i = m; i >= 0; i--){
            dp[i][n] = Integer.MAX_VALUE;
        }
        for(int j = n; j >= 0; j--){
            dp[m][j] = Integer.MAX_VALUE;
        }
        dp[m][n - 1] = dp[m - 1][n] = 1;
        for(int i = m - 1; i >= 0; i--){
            for(int j = n - 1; j >=0; j--){
                dp[i][j] = Math.min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j];
                dp[i][j] = Math.max(1, dp[i][j]);
            }
        }
        return dp[0][0];
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2235233.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

别名路径联想设置

如何使用/进行路径提示&#xff1f; 找到jsconfig.json文件&#xff0c;如何项目中没有的话&#xff0c;自行创建 {"compilerOptions": {"paths": {"/*": ["./src/*"]}},"exclude": ["node_modules", "dis…

40V耐压 降压恒压芯片 SL3061替换XL4301 支持2.5A电流 内置MOS管

一、基本性能参数对比 二、替换可行性分析 耐压能力&#xff1a;SL3061的耐压能力为40V&#xff0c;而XL4301的工作电压范围为8V至40V&#xff0c;最大耐压可能更高&#xff08;达到45V&#xff09;。在多数应用场景下&#xff0c;SL3061的耐压能力应能满足需求&#xff0c;但…

字节青训-小D的 abc 变换问题

问题描述 小D拿到了一个仅由 "abc" 三种字母组成的字符串。她每次操作会对所有字符同时进行以下变换&#xff1a; 将 a 变成 bc将 b 变成 ca将 c 变成 ab 小D将重复该操作 k 次。你的任务是输出经过 k 次变换后&#xff0c;得到的最终字符串。 例如&#xff1a;对于初…

设计模式09-行为型模式2(状态模式/策略模式/Java)

5.4 状态模式 5.4.1 状态模式的定义 1.模式动机&#xff1a;有些对象具有多种状态&#xff0c;这些状态在某些情况下能够相互转换&#xff0c;对象在不同的状态下将具有不同的行为&#xff0c;将拥有状态的对象中和状态的行为分离。 2.模式定义&#xff1a;允许一个对象在其…

Postman上传图片如何处理

打开Postman&#xff0c;创建一个新的请求 URL: http://90.104.232.49:80/dev-api/appcommon/upload 如果有解密进入上传就在请求头添加 点击“Body”选项卡。 选择“form-data”类型。 在“KEY”列中输入文件字段的名称&#xff0c;例如file。 在“VALUE”列中&#xff0…

MongoDB笔记03-MongoDB索引

文章目录 一、前言1.1 概述1.2 MongoDB索引使用B-Tree还是BTree&#xff1f;1.3 B 树和 B 树的对比1.4 总结 二、索引的类型2.1 单字段索引2.2 复合索引2.3 其他索引 三、索引的管理操作3.1 索引的查看3.2 索引的创建3.2.1 单字段索引3.2.2 复合索引 3.3 索引的移除3.3.1 指定索…

MongoDB Shell 基本命令(三)聚合管道

管道含义 类似Linux中的管道&#xff0c;前一个命令的输出作为后一个命令的输入。 显示网络连接、路由表和网络接口统计信息 netstat -ano -netstat:network statistics 网络统计 -a:显示所有连接和监听端口&#xff0c;包括所有活动的TCP和UDP连接。 -n:以数字形式显示地址…

2024年10月国产数据库大事记-墨天轮

本文为墨天轮社区整理的2024年10月国产数据库大事件和重要产品发布消息。 目录 2024年10月国产数据库大事记 TOP102024年10月国产数据库大事记&#xff08;时间线&#xff09;产品/版本发布代表厂商大事记信创数据库上市公司2024年Q3财报 达梦数据&#xff1a;2024年前三季度…

SQL Server 日志记录

SQL Server是一个关系数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;旨在有效地存储、组织、检索和操作大量结构化数据。SQL Server日志是监控数据库活动、排查问题和确保数据一致性的基础&#xff0c;这些日志记录了SQL Server实例中发生的事件的时间顺序。它们充当…

yolo v5 开源项目

项目地址&#xff1a;https://gitcode.net/EricLee/yolo_v5

队列详解

目录 队列队列的概念及结构队列的实现代码 队列功能的实现队列的尾插void QueuePush(Queue*pq, QDataType x);结构体封装指针typedef struct Queue总结 代码 队列的头删void QueuePop(Queue* pq)代码 队列的初始化void QueueInit(Queue* pq)代码 队列的销毁void QueueDestroy(Q…

ViT模型复现项目实战

项目源码获取方式见文章末尾&#xff01; 600多个深度学习项目资料&#xff0c;快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【基于CNN-RNN的影像报告生成】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实现…

是时候用开源降低AI落地门槛了

过去三十多年&#xff0c;从Linux到KVM&#xff0c;从OpenStack到Kubernetes&#xff0c;IT领域众多关键技术都来自开源。开源技术不仅大幅降低了IT成本&#xff0c;也降低了企业技术创新的门槛。 那么&#xff0c;在生成式AI时代&#xff0c;开源能够为AI带来什么&#xff1f;…

【C++打怪之路Lv13】- “继承“篇

&#x1f308; 个人主页&#xff1a;白子寰 &#x1f525; 分类专栏&#xff1a;重生之我在学Linux&#xff0c;C打怪之路&#xff0c;python从入门到精通&#xff0c;数据结构&#xff0c;C语言&#xff0c;C语言题集&#x1f448; 希望得到您的订阅和支持~ &#x1f4a1; 坚持…

数据特征工程:如何计算Teager能量算子(TEO)? | 基于SQL实现

目录 0 TKEO能量算子 1 数据准备 2 特征求解 3 小结 0 TKEO能量算子 TEO(Teager能量算子),由Kaiser于1990年代提出的非线性分析方法(参见Kaiser, 1990; 1993),是一种有效的非线性信号处理工具,它能即时反映信号能量的变化。通过计算相邻采样点的值,TEO能够迅速跟…

淘宝/天猫探店大冒险:用taobao.item_search_shop API把宝贝一网打尽

想象一下&#xff0c;你是一位勇敢的探险家&#xff0c;手拿藏宝图&#xff08;店铺ID&#xff09;&#xff0c;准备潜入神秘的淘宝/天猫店铺&#xff0c;寻找那些隐藏在角落里的宝贝。今天&#xff0c;我们要用taobao.item_search_shop API这张神奇的藏宝图&#xff0c;带你走…

D60【python 接口自动化学习】- python基础之数据库

day60 数据库定义 学习日期&#xff1a;20241106 学习目标&#xff1a;MySQL数据库-- 128&#xff1a;数据库定义 学习笔记&#xff1a; 无处不在的数据库 数据库如何存储数据 数据库管理系统&#xff08;数据库软件&#xff09; 数据库和SQL的关系 总结 数据库就是指数据…

2024年最佳解压软件推荐:轻松管理压缩文件的必备工具

在当今数字化时代&#xff0c;文件的传输和存储变得日益频繁&#xff0c;解压软件在文件管理中扮演着至关重要的角色。 随着数据量的不断增长&#xff0c;大文件的压缩和解压需求也越来越高。解压软件能够将大容量的文件压缩成较小的体积&#xff0c;便于存储和传输&#xff0…

Kubernetes的基本构建块和最小可调度单元pod-0

文章目录 一&#xff0c;什么是pod1.1pod在k8s中使用方法&#xff08;1&#xff09;使用方法一&#xff08;2&#xff09;使用方法二 1.2pod中容器的进程1.3pod的网络隔离管理&#xff08;1&#xff09;pause容器的作用 1.4 Pod分类&#xff1a;&#xff08;1&#xff09;自主式…

vue实现天地图电子围栏

一、文档 vue3 javascript WGS84、GCj02相互转换 天地图官方文档 注册登录然后申请应用key&#xff0c;通过CDN引入 <script src"http://api.tianditu.gov.cn/api?v4.0&tk您的密钥" type"text/javascript"></script>二、分析 所谓电子围…