【高等代数笔记】线性空间(十九-二十四上半部分)

news2024/11/24 4:49:18

课程视频剪辑得太抽象了,一节课不能完整学完,拆的零零散散得。

3. 线性空间

3.19 满秩矩阵

【推论4】设 rank ( A ) = r \text{rank}(\boldsymbol{A})=r rank(A)=r,则 A \boldsymbol{A} A的不为0的 r r r阶子式所在的列(行)是 A \boldsymbol{A} A的列(行)向量组的一个极大线性无关组。

【证】这个 r r r阶子式的列向量组线性无关。从而它们的延伸组 α j 1 , . . α j r \boldsymbol\alpha_{j_1},..\boldsymbol\alpha_{j_r} αj1,..αjr也线性无关。

又由于 rank ( A ) = r \text{rank}(\boldsymbol{A})=r rank(A)=r,因此 α j 1 , . . α j r \boldsymbol\alpha_{j_1},..\boldsymbol\alpha_{j_r} αj1,..αjr就是 A \boldsymbol{A} A的列向量组的一个极大线性无关组。

【定义2】 n n n阶矩阵 A \boldsymbol{A} A的秩等于 n n n,则 A \boldsymbol{A} A称为满秩矩阵
【推论5】 n n n阶矩阵 A \boldsymbol{A} A满秩 ⇔ rank ( A ) = n ⇔ A \Leftrightarrow \text{rank}(A)=n\Leftrightarrow \boldsymbol{A} rank(A)=nA的不为0子式的最高阶数为 n ⇔ ∣ A ∣ ≠ 0 n\Leftrightarrow|\boldsymbol{A}|\ne 0 nA=0

3.20 线性方程组有解判别定理

【定理1】数域 K \textbf{K} K n n n元线性方程组有解 ⇔ \Leftrightarrow 增广矩阵的秩 rank ( A ~ ) = \text{rank}(\tilde{\boldsymbol{A}})= rank(A~)=系数矩阵的秩 rank ( A ) \text{rank}(\boldsymbol{A}) rank(A)

【证】记矩阵 A = ( α 1 , . . . , α n ) \boldsymbol{A}=(\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n}) A=(α1,...,αn)增广矩阵 A ~ = ( α 1 , . . . , α n , β ) \tilde{\boldsymbol{A}}=(\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n},\boldsymbol{\beta}) A~=(α1,...,αn,β)
x 1 α 1 + . . . + x n α n = β ⇔ β ∈ < α 1 , . . . , α n > ⇔ α 1 , . . . , α n , β ∈ < α 1 , . . . , α n > ⇔ < α 1 , . . . , α n , β > ⊆ < α 1 , . . . , α n > 且 < α 1 , . . . , α n > ⊆ < α 1 , . . . , α n , β > (小的是大的子空间) ⇔ < α 1 , . . . , α n > = < α 1 , . . . , α n , β > ⇔ dim ⁡ < α 1 , . . . , α n , β = dim ⁡ < α 1 , . . . , α n > (子空间维数与原空间维数相等,所以子空间等于整个空间) ⇔ rank ( A ~ ) = rank ( A ) x_{1}\boldsymbol{\alpha}_{1}+...+x_{n}\boldsymbol{\alpha}_{n}=\boldsymbol{\beta}\Leftrightarrow\boldsymbol{\beta}\in<\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n}>\Leftrightarrow\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n},\boldsymbol{\beta}\in<\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n}>\Leftrightarrow<\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n},\boldsymbol{\beta}>\subseteq <\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n}>且<\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n}>\subseteq <\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n},\boldsymbol{\beta}>(小的是大的子空间)\Leftrightarrow <\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n}>=<\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n},\boldsymbol{\beta}>\Leftrightarrow\dim<\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n},\boldsymbol{\beta}=\dim<\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{n}>(子空间维数与原空间维数相等,所以子空间等于整个空间)\Leftrightarrow\text{rank}(\tilde{\boldsymbol{A}})=\text{rank}(\boldsymbol{A}) x1α1+...+xnαn=ββ∈<α1,...,αn>⇔α1,...,αn,β∈<α1,...,αn>⇔<α1,...,αn,β>⊆<α1,...,αn><α1,...,αn>⊆<α1,...,αn,β>(小的是大的子空间)⇔<α1,...,αn>=<α1,...,αn,β>⇔dim<α1,...,αn,β=dim<α1,...,αn>(子空间维数与原空间维数相等,所以子空间等于整个空间)rank(A~)=rank(A)

有解时, A ~ \tilde{\boldsymbol{A}} A~经过初等行变换化成的阶梯型矩阵的非0行的个数r = rank ( A ~ ) = rank ( A ) = =\text{rank}(\tilde{\boldsymbol{A}})=\text{rank}(\boldsymbol{A})= =rank(A~)=rank(A)=未知量个数 n n n,当 rank ( A ) = \text{rank}(\boldsymbol{A})= rank(A)=未知量个数 n n n的时候,方程组有唯一解;当 rank ( A ) < \text{rank}(\boldsymbol{A})< rank(A)<未知量个数 n n n的时候,方程组有无穷多个解
特别地
【推论1】数域 K \textbf{K} K n n n元齐次线性方程组有非0解 ⇔ rank ( A ) < \Leftrightarrow\text{rank}(\boldsymbol{A})< rank(A)<未知量个数 n n n;数域 K \textbf{K} K n n n元齐次线性方程组有唯一0解 ⇔ rank ( A ) = \Leftrightarrow\text{rank}(\boldsymbol{A})= rank(A)=未知量个数 n n n

3.21 齐次线性方程组解集的结构

数域 K \textbf{K} K n n n元齐次线性方程组
x 1 α 1 + . . . + x n α n = 0 x_{1}\boldsymbol{\alpha}_{1}+...+x_{n}\boldsymbol{\alpha}_{n}=\boldsymbol{0} x1α1+...+xnαn=0…(1)
的解集记作 W \textbf{W} W
设(1)有非0解, W ⊆ K n \textbf{W}\subseteq\textbf{K}^{n} WKn(非空子集)
【性质1】若 η , δ ∈ W \boldsymbol\eta,\boldsymbol\delta\in\textbf{W} η,δW,则 η + δ ∈ W \boldsymbol\eta + \boldsymbol\delta \in\textbf{W} η+δW

【证】记 η = ( c 1 , . . . , c n ) ′ , δ = ( d 1 , . . . , d n ) ′ \boldsymbol\eta=(c_1,...,c_n)',\boldsymbol\delta=(d_1,...,d_n)' η=(c1,...,cn),δ=(d1,...,dn)
由于它们两个都是方程组的解,所以:
c 1 α 1 + . . . + c n α n = 0 c_{1}\boldsymbol{\alpha}_{1}+...+c_{n}\boldsymbol{\alpha}_{n}=\boldsymbol{0} c1α1+...+cnαn=0
d 1 α 1 + . . . + d n α n = 0 d_{1}\boldsymbol{\alpha}_{1}+...+d_{n}\boldsymbol{\alpha}_{n}=\boldsymbol{0} d1α1+...+dnαn=0
将上面式子相加得到
( c 1 + d 1 ) α 1 + . . . + ( c n + d n ) α n = 0 (c_1+d_1)\boldsymbol{\alpha}_{1}+...+(c_n+d_n)\boldsymbol{\alpha}_{n}=\boldsymbol{0} (c1+d1)α1+...+(cn+dn)αn=0
η + δ = ( c 1 + d 1 , . . . , c n + d n ) ′ \boldsymbol\eta + \boldsymbol\delta =(c_1+d_1,...,c_n+d_n)' η+δ=(c1+d1,...,cn+dn)也是方程组的解,即 η + δ ∈ W \boldsymbol\eta + \boldsymbol\delta \in\textbf{W} η+δW
所以对加法封闭,证毕。

【性质2】若 η ∈ W , k ∈ K \boldsymbol\eta\in\textbf{W},k\in\textbf{K} ηW,kK,则 k η ∈ W k\boldsymbol\eta \in\textbf{W} kηW

【证】记 η = ( c 1 , . . . , c n ) ′ \boldsymbol\eta=(c_1,...,c_n)' η=(c1,...,cn),由于 η \boldsymbol\eta η是方程组的解,所以
c 1 α 1 + . . . + c n α n = 0 c_{1}\boldsymbol{\alpha}_{1}+...+c_{n}\boldsymbol{\alpha}_{n}=\boldsymbol{0} c1α1+...+cnαn=0
上面式子左右两边同时乘 k k k得到
k c 1 α 1 + . . . + k c n α n = 0 kc_{1}\boldsymbol{\alpha}_{1}+...+kc_{n}\boldsymbol{\alpha}_{n}=\boldsymbol{0} kc1α1+...+kcnαn=0
k η ∈ W k\boldsymbol\eta \in\textbf{W} kηW

所以(1)的解集 W \textbf{W} W K n \textbf{K}^n Kn的子空间,称 W \textbf{W} W为齐次线性方程组(1)的解空间
当(1)有非零解时,求 W \textbf{W} W的基和维数。(未知数个数为 n n n
rank ( A ) = r < n \text{rank}(\boldsymbol{A})=r<n rank(A)=r<n
A \boldsymbol{A} A经过初等行变换化成阶梯型矩阵 J \boldsymbol{J} J,于是 J \boldsymbol{J} J r r r个非0行,即 J \boldsymbol{J} J r r r个主元,不妨设 r r r个主元它们分别在前 r r r列,从而齐次线性方程组(1)的一般解为 { x 1 = − b 1 , r + 1 x r + 1 − b 1 , r + 2 x r + 2 − . . . − b 1 , n x n ⋮ x r = − b r , r + 1 x r + 1 − b r , r + 2 x r + 2 − . . . − b r , n x n \left\{\begin{array}{c} x_1 & = & -b_{1,r+1}x_{r+1}-b_{1,r+2}x_{r+2}-...-b_{1,n}x_{n} \\ \vdots \\ x_r & = & -b_{r,r+1}x_{r+1}-b_{r,r+2}x_{r+2}-...-b_{r,n}x_{n} \end{array}\right. x1xr==b1,r+1xr+1b1,r+2xr+2...b1,nxnbr,r+1xr+1br,r+2xr+2...br,nxn,让自由未知量 x r + 1 , . . . , x n x_{r+1},...,x_n xr+1,...,xn n − r n-r nr组数 ( 1 0 ⋮ 0 ) , ( 0 1 ⋮ 0 ) , ⋯   , ( 0 0 ⋮ 1 ) \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix},\cdots,\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} 100 , 010 ,, 001 …(2),得到方程组(1)的解:
η 1 = ( − b 1 , r + 1 ⋮ − b r , r + 1 1 0 ⋮ 0 ) , η 2 = ( − b 1 , r + 2 ⋮ − b r , r + 2 0 1 ⋮ 0 ) , ⋯   , η n − r = ( − b 1 , n ⋮ − b r , n 0 1 ⋮ 0 ) \boldsymbol\eta_1=\begin{pmatrix} -b_{1,r+1}\\ \vdots\\ -b_{r,r+1}\\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},\boldsymbol\eta_2=\begin{pmatrix} -b_{1,r+2}\\ \vdots\\ -b_{r,r+2}\\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix},\cdots,\boldsymbol\eta_{n-r}=\begin{pmatrix} -b_{1,n}\\ \vdots\\ -b_{r,n}\\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} η1= b1,r+1br,r+1100 ,η2= b1,r+2br,r+2010 ,,ηnr= b1,nbr,n010 …(3)
易看出向量组(2)线性无关(拼成的矩阵的行列式不得0),从而其延伸组 η 1 , η 2 . . . , η n − r \boldsymbol\eta_1,\boldsymbol\eta_2...,\boldsymbol\eta_n-r η1,η2...,ηnr也线性无关,任取 W \textbf{W} W的一个解向量 η = ( c 1 ⋮ c r c r + 1 ⋮ c n ) \boldsymbol\eta=\begin{pmatrix} c_1\\ \vdots \\ c_r \\ c_{r+1} \\ \vdots \\ c_n \end{pmatrix} η= c1crcr+1cn ,由一般解公式得 c 1 = − b 1 , r + 1 c r + 1 − . . . − b 1 n c n , . . . , c r = − b r , r + 1 c r + 1 − . . . − b r n c n c_1=-b_{1,r+1}c_{r+1}-...-b_{1n}c_n,...,c_r=-b_{r,r+1}c_{r+1}-...-b_{rn}c_n c1=b1,r+1cr+1...b1ncn,...,cr=br,r+1cr+1...brncn,从而 η = ( c 1 ⋮ c r c r + 1 ⋮ c n ) = ( − b 1 , r + 1 c r + 1 − . . . − b 1 n c n ⋮ − b r , r + 1 c r + 1 − . . . − b r n c n 1 ⋅ c r + 1 + . . . 0 ⋅ c n ⋮ 0 ⋅ c r + 1 + . . . + 1 ⋅ c n ) = c r + 1 ( − b 1 , r + 1 ⋮ − b r , r + 1 1 ⋮ 0 ) + . . . + c n ( − b 1 n ⋮ − b r n 0 ⋮ 1 ) = c r + 1 η 1 + . . . + c n η n − r \boldsymbol\eta=\begin{pmatrix} c_1\\ \vdots \\ c_r \\ c_{r+1} \\ \vdots \\ c_n \end{pmatrix}=\begin{pmatrix} -b_{1,r+1}c_{r+1}-...-b_{1n}c_n\\ \vdots \\ -b_{r,r+1}c_{r+1}-...-b_{rn}c_n \\ 1\cdot c_{r+1}+...0\cdot c_n \\ \vdots \\ 0\cdot c_{r+1}+...+1\cdot c_{n} \end{pmatrix}=c_{r+1}\begin{pmatrix} -b_{1,r+1}\\ \vdots \\ -b_{r,r+1} \\ 1 \\ \vdots \\ 0 \end{pmatrix}+...+c_{n}\begin{pmatrix} -b_{1n}\\ \vdots \\ -b_{rn} \\ 0 \\ \vdots \\ 1 \end{pmatrix}=c_{r+1}\boldsymbol\eta_{1}+...+c_n\boldsymbol\eta_{n-r} η= c1crcr+1cn = b1,r+1cr+1...b1ncnbr,r+1cr+1...brncn1cr+1+...0cn0cr+1+...+1cn =cr+1 b1,r+1br,r+110 +...+cn b1nbrn01 =cr+1η1+...+cnηnr
因此 η 1 , . . . , η n − r \boldsymbol\eta_{1},...,\boldsymbol\eta_{n-r} η1,...,ηnr W \textbf{W} W的一个基,从而 dim ⁡ W = n − r = n − rank ( A ) \dim \textbf{W}=n-r=n-\text{rank}(\boldsymbol{A}) dimW=nr=nrank(A),于是就证明了下面的定理1
【定理1】数域 K \textbf{K} K n n n元齐次线性方程组(1)有非0解时,它的解空间 W \textbf{W} W的维数 dim ⁡ W = \dim \textbf{W} = dimW=未知量个数 n − n- n系数矩阵的秩 rank ( A ) \text{rank}(\boldsymbol{A}) rank(A),习惯上把 W \textbf{W} W的基称为齐次线性方程组(1)的一个基础解系
η 1 , . . . , η n − r \boldsymbol\eta_{1},...,\boldsymbol\eta_{n-r} η1,...,ηnr是齐次线性方程组(1)的一个基础解析,那么它的全部解为 k 1 η 1 + . . . + k n − r η n − r ∈ K k_1\boldsymbol\eta_{1}+...+k_{n-r}\boldsymbol\eta_{n-r}\in\textbf{K} k1η1+...+knrηnrK

3.22 非齐次线性方程组解集的结构

数域 K \textbf{K} K n n n元非齐次线性方程组
x 1 α 1 + . . . + x n α n = β x_1\boldsymbol\alpha_1+...+x_n\boldsymbol\alpha_n=\boldsymbol\beta x1α1+...+xnαn=β
它的解集记作 U \textbf{U} U,考虑相应的齐次线性方程组
x 1 α 1 + . . . + x n α n = 0 x_1\boldsymbol\alpha_1+...+x_n\boldsymbol\alpha_n=\boldsymbol{0} x1α1+...+xnαn=0
它的解集记作 W \textbf{W} W
【性质1】若 γ = ( a 1 , . . . , a n ) ′ , δ = ( b 1 , . . , b n ) ′ ∈ U \boldsymbol\gamma=(a_1,...,a_n)',\boldsymbol\delta=(b_1,..,b_n)'\in\textbf{U} γ=(a1,...,an),δ=(b1,..,bn)U,则 γ − δ = ( a 1 − b 1 , . . . , a n − b n ) ′ ∈ W \boldsymbol\gamma-\boldsymbol\delta=(a_1-b_1,...,a_n-b_n)'\in\textbf{W} γδ=(a1b1,...,anbn)W,即非齐次线性方程组的解的差是对应的齐次线性方程组的解。

【证】 a 1 α 1 + . . . + a n α n = β a_1\boldsymbol\alpha_1+...+a_n\boldsymbol\alpha_n=\boldsymbol\beta a1α1+...+anαn=β
b 1 α 1 + . . . + b n α n = β b_1\boldsymbol\alpha_1+...+b_n\boldsymbol\alpha_n=\boldsymbol\beta b1α1+...+bnαn=β
两个式子相减得
( a 1 − b 1 ) α 1 + . . . + ( a n − b n ) α n = 0 (a_1-b_1)\boldsymbol\alpha_1+...+(a_n-b_n)\boldsymbol\alpha_n=\boldsymbol{0} (a1b1)α1+...+(anbn)αn=0
γ − δ = ( a 1 − b 1 , . . . , a n − b n ) ′ ∈ W \boldsymbol\gamma-\boldsymbol\delta=(a_1-b_1,...,a_n-b_n)'\in\textbf{W} γδ=(a1b1,...,anbn)W

【性质2】若 γ = ( a 1 , . . . , a n ) ′ ∈ U , η = ( c 1 , . . . , c n ) ′ ∈ W \boldsymbol\gamma=(a_1,...,a_n)'\in\textbf{U},\boldsymbol\eta=(c_1,...,c_n)'\in\textbf{W} γ=(a1,...,an)U,η=(c1,...,cn)W,则 γ + η ∈ U \boldsymbol\gamma+\boldsymbol\eta\in\textbf{U} γ+ηU,即齐次线性方程组的解加非齐次线性方程组的解等于非齐次线性方程组的解。

【证】 a 1 α 1 + . . . + a n α n = β a_1\boldsymbol\alpha_{1}+...+a_n\boldsymbol\alpha_{n}=\boldsymbol\beta a1α1+...+anαn=β
x 1 α 1 + . . . + c n α n = 0 x_1\boldsymbol\alpha_{1}+...+c_n\boldsymbol\alpha_{n}=\boldsymbol{0} x1α1+...+cnαn=0
将上面两个式子相加得:
( a 1 + c 1 ) α 1 + . . . + ( a n + c n ) α n = β (a_1+c_1)\boldsymbol\alpha_{1}+...+(a_n+c_n)\boldsymbol\alpha_{n}=\boldsymbol\beta (a1+c1)α1+...+(an+cn)αn=β
γ + η ∈ U \boldsymbol\gamma+\boldsymbol\eta\in\textbf{U} γ+ηU

γ 0 ∈ U \boldsymbol\gamma_{0}\in\textbf{U} γ0U,称 γ 0 \boldsymbol\gamma_{0} γ0是非齐次线性方程组的一个特解
γ 0 + W : = { γ 0 + η ∣ η ∈ W } = U \boldsymbol\gamma_{0}+\textbf{W}:=\{\boldsymbol\gamma_{0}+\boldsymbol\eta|\boldsymbol\eta\in\textbf{W}\}=\textbf{U} γ0+W:={γ0+ηηW}=U
任取 γ ∈ U , ( γ − γ 0 ) ∈ W \boldsymbol\gamma\in\textbf{U},(\boldsymbol\gamma-\boldsymbol\gamma_{0})\in\textbf{W} γU,(γγ0)W记作 η \boldsymbol\eta η,从而 γ = γ 0 + η ∈ W \boldsymbol\gamma=\boldsymbol\gamma_0 + \boldsymbol\eta\in\textbf{W} γ=γ0+ηW
于是就证明了
【定理1】数域 K \textbf{K} K n n n元非齐次线性方程组(1)的解集 U \textbf{U} U U = γ 0 + W \textbf{U}=\boldsymbol\gamma_0+\textbf{W} U=γ0+W,其中 γ 0 \boldsymbol\gamma_0 γ0是非齐次方程组的一个特解, W \textbf{W} W是齐次线性方程组的通解, U \textbf{U} U不是 K n \textbf{K}^{n} Kn的子空间,将 γ 0 \gamma_0 γ0称为 W \textbf{W} W型的一个线性流形。(比如线性空间中,过顶点 O O O的平面是子空间,不过顶点 O O O的平面叫线性流形)或称为 W \textbf{W} W的一个陪基
W \textbf{W} W的一个基础解系 η 1 , . . . , η n − 1 \boldsymbol\eta_1,...,\boldsymbol\eta_{n-1} η1,...,ηn1,则非齐次线性方程组(1)的全部解为 γ 0 + k 1 η 1 + . . . + k n − r η n − r \boldsymbol\gamma_0+k_1\boldsymbol\eta_1+...+k_{n-r}\boldsymbol\eta_{n-r} γ0+k1η1+...+knrηnr,其中 k 1 , . . . , k n − r ∈ K k_1,...,k_{n-r}\in\textbf{K} k1,...,knrK γ 0 \boldsymbol\gamma_0 γ0是非齐次线性方程组的一个特解
【解非齐次线性方程组,解对应的齐次方程组,然后再令自由未知量取0或1,最后解得齐次通解+非齐次特解的形式】

3.23 子空间的运算

过顶点 O O O的平面,平面 V 1 \textbf{V}_1 V1 V 2 \textbf{V}_2 V2的交集是过 O O O点的一条直线 l l l.

V \textbf{V} V是数域 K \textbf{K} K上的任意一个线性空间, V 1 \textbf{V}_1 V1 V 2 \textbf{V}_2 V2都是 V \textbf{V} V的子空间, V 1 ∩ V 2 \textbf{V}_1\cap\textbf{V}_2 V1V2 V \textbf{V} V的子空间。(子空间的交集还是子空间,满足 V 1 ∩ V 2 = V 2 ∩ V 1 \textbf{V}_1\cap\textbf{V}_2=\textbf{V}_2\cap\textbf{V}_1 V1V2=V2V1,所以子空间的交满足交换律,由 ( V 1 ∩ V 2 ) ∩ V 3 = V 1 ∩ ( V 2 ∩ V 3 ) (\textbf{V}_1\cap\textbf{V}_2)\cap\textbf{V}_3=\textbf{V}_1\cap(\textbf{V}_2\cap\textbf{V}_3) (V1V2)V3=V1(V2V3),则子空间的交满足结合律,且若干个子空间的交还是子空间 ⋂ i = 1 s V i = V 1 ∩ V 2 ∩ . . . ∩ V s \bigcap\limits_{i=1}^{s} \textbf{V}_i=\textbf{V}_1\cap\textbf{V}_2\cap...\cap\textbf{V}_s i=1sVi=V1V2...Vs

【证】 0 ∈ V 1 ∩ V 2 \boldsymbol{0}\in\textbf{V}_1\cap\textbf{V}_2 0V1V2
任取 α , β ∈ V 1 ∩ V 2 \boldsymbol\alpha,\boldsymbol\beta\in\textbf{V}_1\cap\textbf{V}_2 α,βV1V2
由于 α , β ∈ V 1 ∩ V 2 \boldsymbol\alpha,\boldsymbol\beta\in\textbf{V}_1\cap\textbf{V}_2 α,βV1V2,所以 α ∈ V 1 , β ∈ V 1 \boldsymbol\alpha\in\textbf{V}_1,\boldsymbol\beta\in\textbf{V}_1 αV1,βV1,所以 α + β ∈ V 1 \boldsymbol\alpha+\boldsymbol\beta\in\textbf{V}_1 α+βV1,同理 α + β ∈ V 2 \boldsymbol\alpha+\boldsymbol\beta\in\textbf{V}_2 α+βV2
从而 α + β ∈ V 1 ∩ V 2 \boldsymbol\alpha+\boldsymbol\beta\in\textbf{V}_1\cap\textbf{V}_2 α+βV1V2
所以 V 1 ∩ V 2 \textbf{V}_1\cap\textbf{V}_2 V1V2对加法封闭;
任取 α ∈ V 1 ∩ V 2 , k ∈ K \boldsymbol\alpha\in\textbf{V}_1\cap\textbf{V}_2,k\in\textbf{K} αV1V2,kK k α ∈ V 1 ∩ V 2 k\boldsymbol\alpha\in\textbf{V}_1\cap\textbf{V}_2 kαV1V2
因此 V 1 ∩ V 2 \textbf{V}_1\cap\textbf{V}_2 V1V2 V \textbf{V} V的一个子空间。

平面 V 1 \textbf{V}_1 V1和平面 V 2 \textbf{V}_2 V2的并集不是子空间,因为:

图中, α 1 + α 2 \boldsymbol\alpha_{1}+\boldsymbol\alpha_2 α1+α2不在 V 1 \textbf{V}_1 V1 V 2 \textbf{V}_2 V2平面上
V 1 \textbf{V}_1 V1 V 2 \textbf{V}_2 V2都是 V \textbf{V} V的子空间,则 V 1 + V 2 : = { α 1 + α 1 ∣ α 1 ∈ V 1 , α 2 ∈ V 2 } \textbf{V}_1+\textbf{V}_2:=\{\boldsymbol\alpha_1+\boldsymbol\alpha_1|\boldsymbol\alpha_1\in\textbf{V}_1,\boldsymbol\alpha_2\in\textbf{V}_2\} V1+V2:={α1+α1α1V1,α2V2}
由于 0 = 0 + 0 \boldsymbol{0}=\boldsymbol{0}+\boldsymbol{0} 0=0+0,因此 0 ∈ V 1 + V 2 \boldsymbol{0}\in\textbf{V}_1+\textbf{V}_2 0V1+V2
任取 V 1 + V 2 \textbf{V}_1+\textbf{V}_2 V1+V2的两个向量 α 1 + α 2 , β 1 + β 2 , α 1 , β 1 ∈ V 1 , α 2 , β 2 ∈ V 2 \boldsymbol\alpha_1+\boldsymbol\alpha_2,\boldsymbol\beta_1+\boldsymbol\beta_2,\boldsymbol\alpha_1,\boldsymbol\beta_1\in\textbf{V}_1,\boldsymbol\alpha_2,\boldsymbol\beta_2\in\textbf{V}_2 α1+α2,β1+β2,α1,β1V1,α2,β2V2
( α 1 + α 2 ) + ( β 1 + β 2 ) = ( α 1 + β 1 ) + ( α 2 + β 2 ) (\boldsymbol\alpha_1+\boldsymbol\alpha_2)+(\boldsymbol\beta_1+\boldsymbol\beta_2)=(\boldsymbol\alpha_1+\boldsymbol\beta_1)+(\boldsymbol\alpha_2+\boldsymbol\beta_2) (α1+α2)+(β1+β2)=(α1+β1)+(α2+β2)
由于 α 1 + β 1 ∈ V 1 , α 2 + β 2 ∈ V 2 \boldsymbol\alpha_1+\boldsymbol\beta_1\in\textbf{V}_1,\boldsymbol\alpha_2+\boldsymbol\beta_2\in\textbf{V}_2 α1+β1V1,α2+β2V2
( α 1 + α 2 ) + ( β 1 + β 2 ) = ( α 1 + β 1 ) + ( α 2 + β 2 ) ∈ V 1 + V 2 (\boldsymbol\alpha_1+\boldsymbol\alpha_2)+(\boldsymbol\beta_1+\boldsymbol\beta_2)=(\boldsymbol\alpha_1+\boldsymbol\beta_1)+(\boldsymbol\alpha_2+\boldsymbol\beta_2)\in\textbf{V}_1+\textbf{V}_2 (α1+α2)+(β1+β2)=(α1+β1)+(α2+β2)V1+V2,所以对加法封闭
k ∈ K , k ( α 1 + α 2 ) = k α 1 + k α 2 ∈ V 1 + V 2 k\in\textbf{K},k(\boldsymbol\alpha_1+\boldsymbol\alpha_2)=k\boldsymbol\alpha_1+k\boldsymbol\alpha_2\in\textbf{V}_1+\textbf{V}_2 kK,k(α1+α2)=kα1+kα2V1+V2,所以对数量乘法封闭
因此 V 1 + V 2 \textbf{V}_1+\textbf{V}_2 V1+V2 V \textbf{V} V的一个子空间,把 V 1 + V 2 \textbf{V}_1+\textbf{V}_2 V1+V2称为子空间 V 1 \textbf{V}_1 V1 V 2 \textbf{V}_2 V2
同样地满足交换律,结合律。

  • V 1 + V 2 = V 2 + V 1 \textbf{V}_1+\textbf{V}_2=\textbf{V}_2+\textbf{V}_1 V1+V2=V2+V1
  • ( V 1 + V 2 ) + V 3 = V 1 + ( V 2 + V 3 ) (\textbf{V}_1+\textbf{V}_2)+\textbf{V}_3=\textbf{V}_1+(\textbf{V}_2+\textbf{V}_3) (V1+V2)+V3=V1+(V2+V3)
  • ∑ i = 1 s V i : = V 1 + V 2 + . . . + V s \sum\limits_{i=1}^{s}\textbf{V}_i:=\textbf{V}_1+\textbf{V}_2+...+\textbf{V}_s i=1sVi:=V1+V2+...+Vs也是 V \textbf{V} V的一个子空间。

【命题1】 < α 1 , . . . , α s > + < β 1 , . . . , β r > = k 1 α 1 + . . . + k s α s + l 1 β 1 + . . + l r β r = < α 1 , . . . , α s , β 1 , . . . , β r > <\boldsymbol\alpha_1,...,\boldsymbol\alpha_s>+<\boldsymbol\beta_1,...,\boldsymbol\beta_r>=k_1\boldsymbol\alpha_1+...+k_s\boldsymbol\alpha_s+l_1\boldsymbol\beta_1+..+l_r\boldsymbol\beta_r=<\boldsymbol\alpha_1,...,\boldsymbol\alpha_s,\boldsymbol\beta_1,...,\boldsymbol\beta_r> <α1,...,αs>+<β1,...,βr>=k1α1+...+ksαs+l1β1+..+lrβr=<α1,...,αs,β1,...,βr>

【定理2】【子空间的维数公式】设 V 1 , V 2 \textbf{V}_1,\textbf{V}_2 V1,V2都是 V \textbf{V} V有限维子空间, dim ⁡ ( V 1 + V 2 ) = dim ⁡ ( V 1 ) + dim ⁡ ( V 2 ) − dim ⁡ ( V 1 ∩ V 2 ) \dim(\textbf{V}_1+\textbf{V}_2)=\dim(\textbf{V}_1)+\dim(\textbf{V}_2)-\dim(\textbf{V}_1\cap\textbf{V}_2) dim(V1+V2)=dim(V1)+dim(V2)dim(V1V2)

【证】 V 1 ∩ V 2 \textbf{V}_1\cap\textbf{V}_2 V1V2取一个基 α 1 , . . . , α m \boldsymbol\alpha_1,...,\boldsymbol\alpha_m α1,...,αm,把它分别扩充成 V 1 \textbf{V}_1 V1的一个基 α 1 , . . . , α m , β 1 , . . . , β n 1 − m \boldsymbol\alpha_1,...,\boldsymbol\alpha_m,\boldsymbol\beta_1,...,\boldsymbol\beta_{n_1-m} α1,...,αm,β1,...,βn1m
V 2 \textbf{V}_2 V2的一个基 α 1 , . . . , α m , γ 1 , . . . , γ n 2 − m \boldsymbol\alpha_1,...,\boldsymbol\alpha_m,\boldsymbol\gamma_1,...,\boldsymbol\gamma_{n_2-m} α1,...,αm,γ1,...,γn2m;其中 n 1 n_1 n1 V 1 \textbf{V}_1 V1的维数, n 2 n_2 n2 V 2 \textbf{V}_2 V2的维数
V 1 + V 2 = < α 1 , . . . , α m , β 1 , . . . , β n 1 − m > + < α 1 , . . . , α m , γ 1 , . . . , γ n 2 − m > = < α 1 , . . . , α m , β 1 , . . . , β n 1 − m , γ 1 , . . . , γ n 2 − m > \textbf{V}_1+\textbf{V}_2=<\boldsymbol\alpha_1,...,\boldsymbol\alpha_m,\boldsymbol\beta_1,...,\boldsymbol\beta_{n_1-m}>+<\boldsymbol\alpha_1,...,\boldsymbol\alpha_m,\boldsymbol\gamma_1,...,\boldsymbol\gamma_{n_2-m}>=<\boldsymbol\alpha_1,...,\boldsymbol\alpha_m,\boldsymbol\beta_1,...,\boldsymbol\beta_{n_1-m},\boldsymbol\gamma_1,...,\boldsymbol\gamma_{n_2-m}> V1+V2=<α1,...,αm,β1,...,βn1m>+<α1,...,αm,γ1,...,γn2m>=<α1,...,αm,β1,...,βn1m,γ1,...,γn2m>
k 1 α 1 + . . . + k m α m + p 1 β 1 + . . . + p n 1 − m β n 1 − m + q 1 γ 1 + . . . + q n 2 − m γ n 2 − m = 0 k_1\boldsymbol\alpha_1+...+k_m\boldsymbol\alpha_m+p_1\boldsymbol\beta_1+...+p_{n_1-m}\boldsymbol\beta_{n_1-m}+q_1\boldsymbol\gamma_1+...+q_{n_2-m}\boldsymbol\gamma_{n_2-m}=\boldsymbol{0} k1α1+...+kmαm+p1β1+...+pn1mβn1m+q1γ1+...+qn2mγn2m=0…(1)
q 1 γ 1 + . . . + q n 2 − m γ n 2 − m = − k 1 α 1 − . . . − k m α m − p 1 β 1 − . . . − p n 1 − m β n 1 − m ∈ V 1 ∩ V 2 q_1\boldsymbol\gamma_1+...+q_{n_2-m}\boldsymbol\gamma_{n_2-m}=-k_1\boldsymbol\alpha_1-...-k_m\boldsymbol\alpha_m-p_1\boldsymbol\beta_1-...-p_{n_1-m}\boldsymbol\beta_{n_1-m}\in\textbf{V}_1\cap\textbf{V}_2 q1γ1+...+qn2mγn2m=k1α1...kmαmp1β1...pn1mβn1mV1V2
q 1 γ 1 + . . . + q n 2 − m γ n 2 − m ∈ V 2 , − k 1 α 1 − . . . − k m α m − p 1 β 1 − . . . − p n 1 − m β n 1 − m ∈ V 1 q_1\boldsymbol\gamma_1+...+q_{n_2-m}\boldsymbol\gamma_{n_2-m}\in\textbf{V}_2,-k_1\boldsymbol\alpha_1-...-k_m\boldsymbol\alpha_m-p_1\boldsymbol\beta_1-...-p_{n_1-m}\boldsymbol\beta_{n_1-m}\in\textbf{V}_1 q1γ1+...+qn2mγn2mV2,k1α1...kmαmp1β1...pn1mβn1mV1
于是 q 1 γ 1 + . . . + q n 2 − m γ n 2 − m = l 1 α 1 + . . . + l m α m q_1\boldsymbol\gamma_1+...+q_{n_2-m}\boldsymbol\gamma_{n_2-m}=l_1\boldsymbol\alpha_1+...+l_m\boldsymbol\alpha_m q1γ1+...+qn2mγn2m=l1α1+...+lmαm
从而 − l 1 α 1 − l m α m + q 1 γ 1 + . . . + q n 2 − m γ n 2 − m = 0 -l_1\boldsymbol\alpha_1-l_m\boldsymbol\alpha_m+q_1\boldsymbol\gamma_1+...+q_{n_2-m}\boldsymbol\gamma_{n_2-m}=\boldsymbol{0} l1α1lmαm+q1γ1+...+qn2mγn2m=0
因为基是线性无关的,
因此 l 1 = . . . = l m = q 1 = . . . = q n 2 − m = 0 l_1=...=l_m=q_1=...=q_{n_2-m}=0 l1=...=lm=q1=...=qn2m=0代入(1)式得 k 1 α 1 + . . . + k m α m + p 1 β 1 + . . . + p n 1 − m β n 1 − m k_1\boldsymbol\alpha_1+...+k_m\boldsymbol\alpha_m+p_1\boldsymbol\beta_1+...+p_{n_1-m}\boldsymbol\beta_{n_1-m} k1α1+...+kmαm+p1β1+...+pn1mβn1m
因为基是线性无关的
从而 k 1 = . . . = k m = p 1 = . . . = p n 1 − m = 0 k_1=...=k_m=p_1=...=p_{n_1-m}=0 k1=...=km=p1=...=pn1m=0
所以 < α 1 , . . . , α m , γ 1 , . . . , γ n 2 − m > <\boldsymbol\alpha_1,...,\boldsymbol\alpha_m,\boldsymbol\gamma_1,...,\boldsymbol\gamma_{n_2-m}> <α1,...,αm,γ1,...,γn2m>线性无关
从而 dim ⁡ ( V 1 + V 2 ) = m + ( n 1 − m ) + ( n 2 − m ) = n 1 + n 2 − m = dim ⁡ ( V 1 ) + dim ⁡ ( V 2 ) − dim ⁡ ( V 1 ∩ V 2 ) \dim(\textbf{V}_1+\textbf{V}_2)=m+(n_1-m)+(n_2-m)=n_1+n_2-m=\dim(\textbf{V}_1)+\dim(\textbf{V}_2)-\dim(\textbf{V}_1\cap\textbf{V}_2) dim(V1+V2)=m+(n1m)+(n2m)=n1+n2m=dim(V1)+dim(V2)dim(V1V2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2194377.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

75 华三vlan端口隔离

华三vlan端口隔离 为了实现端口间的二层隔离&#xff0c;可以将不同的端口加入不同的VLAN&#xff0c;但VLAN资源有限。采用端口隔离特性&#xff0c;用户只需要将端口加入到隔离组中&#xff0c;就可以实现隔离组内端口之间二层隔离&#xff0c;而不关心这些端口所属VLAN&…

【每日一题 | 24.10.7】Fizz Buzz 经典问题

1. 题目2. 解题思路3. 代码实现&#xff08;AC_Code&#xff09; 个人主页&#xff1a;C_GUIQU 归属专栏&#xff1a;每日一题 1. 题目 Fizz Buzz 经典问题 2. 解题思路 【法1】逻辑硬解&#xff1a;按照题目逻辑分四种情况&#xff0c;用if else 判断即可。 【法2】switc…

大数据新视界 --大数据大厂之 Ibis:独特架构赋能大数据分析高级抽象层

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

【电力系统】基于MATLAB的储能辅助电力系统调峰的容量需求研究

摘要 本研究基于MATLAB仿真平台&#xff0c;探讨了储能系统在电力系统中辅助调峰的容量需求问题。通过对风电、微型燃气机等分布式能源的实际出力曲线与理论输出进行比较分析&#xff0c;我们探讨了在不同负荷条件下储能系统的调峰能力。实验结果表明&#xff0c;储能系统的合…

js逆向--某招标公告公示搜索引擎DES解密

js逆向--某招标公告公示搜索引擎DES解密 一、寻找数据接口二、寻找解密入口三、编写代码一、寻找数据接口 打开网页,在搜索框中输入关键词python。 试图通过按F12或者右键打开开发者工具,发现均没有反应。这时需要点击浏览器右上角的三个点,然后点击更多工具–开发者工具,…

(笔记)第三期书生·浦语大模型实战营(十一卷王场)–书生基础岛第5关---XTuner 微调个人小助手认知

学员闯关手册&#xff1a;https://aicarrier.feishu.cn/wiki/ZcgkwqteZi9s4ZkYr0Gcayg1n1g?open_in_browsertrue 课程视频&#xff1a;https://www.bilibili.com/video/BV1tz421B72y/ 课程文档&#xff1a; https://github.com/InternLM/Tutorial/tree/camp3/docs/L1/XTuner 关…

复现文章:R语言复现文章画图

文章目录 介绍数据和代码图1图2图6附图2附图3附图4附图5附图6 介绍 文章提供画图代码和数据&#xff0c;本文记录 数据和代码 数据可从以下链接下载&#xff08;画图所需要的所有数据&#xff09;&#xff1a; 百度云盘链接: https://pan.baidu.com/s/1peU1f8_TG2kUKXftkpYq…

【unity进阶知识8】unity场景Scene的使用, 如何封装一个场景管理器

文章目录 一、场景基本操作1、加载切换场景2、获取场景信息3、激活场景4、场景基本属性获取5、已加载场景个数6、获取场景中所有物体7、创建新场景8、卸载销毁场景 二、使用协程方法来异步加载场景1、AsyncOperation相关的代码应写在一个协同程序中。2、allowSceneActivation加…

TypeScript:装饰器

一、简介 随着TypeScript和ES6里引入了类&#xff0c;在一些场景下我们需要额外的特性来支持标注或修改类及其成员。 装饰器&#xff08;Decorators&#xff09;为我们在类的声明及成员上通过元编程语法添加标注提供了一种方式。 Javascript里的装饰器目前处在 建议征集的第二阶…

LeetCode 54 Spiral Matrix 解题思路和python代码

题目&#xff1a; Given an m x n matrix, return all elements of the matrix in spiral order. Example 1: Input: matrix [[1,2,3],[4,5,6],[7,8,9]] Output: [1,2,3,6,9,8,7,4,5] Example 2: Input: matrix [[1,2,3,4],[5,6,7,8],[9,10,11,12]] Output: [1,2,3,4,8,1…

进程间通信——《匿名管道》

文章目录 前言&#xff1a;进程间通信介绍进程间通信目的进程之间如何通信&#xff1f;进程间通信分类 管道什么是管道&#xff1f;匿名管道&#x1f9e8;尝试使用&#xff1a;&#x1f357;处理细节问题&#xff1a; &#x1f680;管道的4种情况和5种特征&#xff1a;4种情况&…

C++引用(变量引用、数组引用与数组指针、引用本质-指针常量、常量引用)

C语言 ——对数组名进行解引用,取地址,还有sizeof和strlen进行操作解析_对数组名解引用得到什么-CSDN博客 C++引用(变量引用、数组引用与数组指针、引用本质-指针常量、常量引用)_c++11 数组引用-CSDN博客

【智能算法应用】指数分布优化算法求解二维路径规划问题

摘要 本项目采用指数分布优化算法来求解二维路径规划问题。通过构建合理的代价函数并结合智能算法进行优化&#xff0c;我们可以在复杂环境中找到最优路径。实验结果表明&#xff0c;该算法在多维空间中表现出高效性和稳定性。 理论 路径规划问题的核心在于从起点到终点选择…

中国喀斯特地貌分布shp格式数据

​ 中国几乎各省区都有不同面积的石灰岩的分布&#xff0c;出露地表的总面积约有130万平方公里&#xff0c;约占全国总面积的13.5%。被埋藏于地下的则更为广泛&#xff0c;有的地区累计厚度可达几千米。以至上万米。由此可见&#xff0c;喀斯特地形的研究对中国来说&#xff0c…

Nuxt.js 应用中的 link:prefetch 钩子详解

title: Nuxt.js 应用中的 link:prefetch 钩子详解 date: 2024/10/7 updated: 2024/10/7 author: cmdragon excerpt: link:prefetch 是一个强大的钩子,允许开发者在链接预取时执行附加逻辑。合理利用这个钩子,可以帮助优化页面的加载速度和用户体验,提升 Web 应用的整体性…

气膜馆的多元化盈利模式与市场前景—轻空间

随着市场经济的不断繁荣&#xff0c;气膜馆作为一种创新型场馆&#xff0c;凭借其独特的结构设计和灵活的运营模式&#xff0c;逐渐成为创业者关注的焦点。那么&#xff0c;气膜馆如何通过多元化经营实现盈利&#xff1f;本文将为您详细解析气膜馆的经营模式与发展机会。 气膜馆…

Hive3.x版本调优总结

文章目录 第 1 章 Explain 查看执行计划&#xff08;重点&#xff09;1.1 创建测试用表1&#xff09;建大表、小表和 JOIN 后表的语句2&#xff09;分别向大表和小表中导入数据 1.2 基本语法1.3 案例实操 第 2 章 Hive 建表优化2.1 分区表2.1.1 分区表基本操作2.1.2 二级分区2.…

Spring Boot医院管理系统:数据驱动的医疗

3系统分析 3.1可行性分析 通过对本医院管理系统实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本医院管理系统采用JAVA作为开发语言&#xff0c;Spring Boot框…

代码随想录算法训练营Day27 | 回溯算法理论基础、77.组合、216.组合总和Ⅲ、17.电话号码的字母组合

目录 回溯算法理论基础 77.组合 216.组合总和Ⅲ 17.电话号码的字母组合 回溯算法理论基础 视频讲解&#xff1a;带你学透回溯算法&#xff08;理论篇&#xff09;| 回溯法精讲&#xff01; 代码随想录&#xff1a;回溯算法理论基础 回溯函数与递归函数指的是同一个函数…

VSCode | 设置Jupyter Notebook显示行号

vscode中的jupyter notebook每个cell都是默认不显示行号的&#xff0c;如果出现了报错&#xff0c;比如在52行出现报错&#xff0c;如果代码多的话不显示行号就有点麻烦&#xff0c;本文介绍如何设置显示行号。 1、VScode点击文件-首选项-设置 2、搜索“python”&#xff0c;点…