摘要
本文介绍了一种基于FMCW(频率调制连续波)雷达技术的无人机毫米波高度计的仿真。FMCW雷达通过测量发射信号与回波信号之间的频差来确定目标的距离和速度。在本项目中,我们使用MATLAB仿真无人机毫米波雷达的性能,展示其在不同飞行高度和速度下的探测能力。仿真结果显示FMCW雷达能够有效检测无人机与地面的高度信息。
理论
FMCW雷达系统的工作原理是发射一段线性调频信号,当信号遇到目标反射回来时,与发射信号产生频率差异。该频率差值与目标的距离成正比,因此可以通过测量频差计算目标的距离。雷达系统通过分析回波信号的频率和相位,获得无人机的飞行高度、速度等参数。
-
FMCW雷达方程:
其中, 𝑓beat为拍频, 𝑅为目标距离, 𝐵为信号带宽, 𝑇为调频周期, 𝑐为光速。
通过该方程,我们可以根据测得的拍频推算无人机的高度。此外,在考虑目标速度时,雷达回波频率会发生多普勒效应,从而产生速度信息。
实验结果
通过MATLAB仿真得到了如下结果:
-
在不同速度和高度下的雷达回波信号变化。
-
雷达3D图展示了距离-速度的分布情况,2D热图展示了特定高度和速度下的信号强度分布。
-
通过分析信号的振幅与距离和速度的关系,展示了FMCW毫米波雷达的探测性能。
图中分别展示了不同高度、速度下的雷达回波信号,以及其对应的距离-速度分布和振幅变化。
部分代码
% 参数设置
c = 3e8; % 光速
fc = 77e9; % 雷达载频
B = 200e6; % 调频带宽
T = 1e-3; % 调频周期
R = 50; % 初始距离
v = 20; % 目标速度
% FMCW雷达信号生成
t = linspace(0, T, 2000);
tx_signal = cos(2*pi*(fc*t + (B/(2*T))*t.^2)); % 发射信号
% 回波信号生成
R_t = R + v*t; % 目标距离随时间变化
delay = 2*R_t/c; % 回波延迟
rx_signal = cos(2*pi*(fc*(t-delay) + (B/(2*T))*(t-delay).^2)); % 回波信号
% 拍频信号
beat_signal = tx_signal .* rx_signal;
% 频谱分析
f_beat = abs(fft(beat_signal));
f = linspace(0, 1/(2*(t(2)-t(1))), length(f_beat)/2);
% 绘制结果
figure;
subplot(2,1,1);
plot(f, f_beat(1:length(f)));
title('FMCW拍频信号频谱');
xlabel('频率 (Hz)');
ylabel('幅度');
% 生成3D距离-速度图
subplot(2,1,2);
mesh(range, velocity, amplitude);
title('距离-速度分布图');
xlabel('距离');
ylabel('速度');
zlabel('幅度');
参考文献
❝
Skolnik, M. I. (2008). Radar Handbook. McGraw-Hill Professional.
Richards, M. A., Scheer, J. A., & Holm, W. A. (2010). Principles of Modern Radar. SciTech Publishing.
Mahafza, B. R. (2017). Radar Systems Analysis and Design Using MATLAB. CRC Press.