ECML PKDD 2024于9月9号-9月13号在立陶宛维尔纽斯举行(Vilnius)
本文总结了ECML PKDD 2024有关时空数据(spatial-temporal data)的相关论文,主要包含交通预测,预训练,迁移学习等内容,如有疏漏,欢迎大家补充。以及时间序列(time series),包括时序预测,异常检测,分类,聚类等内容。
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
Research Track
时空:1-6 时序:7-15
1. Spatiotemporal Covariance Neural Networks
链接:https://link.springer.com/chapter/10.1007/978-3-031-70344-7_2
作者:Andrea Cavallo (Delft University of Technology)*; Mohammad Sabbaqi (Delft University of Technology); Elvin Isufi (Tu Delft)
关键词:多元时间序列,在线学习,PCA
2. Multivariate Traffic Demand Prediction via 2D Spectral Learning and Global Spatial Optimization
链接:https://link.springer.com/chapter/10.1007/978-3-031-70344-7_5
作者:Changlu Chen (UTS)*; Yanbin Liu (Auckland University of Technology); Ling Chen (" University of Technology, Sydney, Australia"); Chengqi Zhang (University of Technology Sydney)
关键词:交通需求预测,空间优化
3. Physics-Informed Spatio-Temporal Model for Human Mobility Prediction
链接:https://link.springer.com/chapter/10.1007/978-3-031-70344-7_24
作者:Quanyan Gao (Zhejiang University); Chao Li (Zhejiang University)*; Qinmin Yang (Zhejiang University)
关键词:人类移动性预测
4. Interpretable and Generalizable Spatiotemporal Predictive Learning with Disentangled Consistency
链接:https://link.springer.com/chapter/10.1007/978-3-031-70352-2_1
作者:Jingxuan Wei (Shenyang institute of computing technology, Chinese academy of sciences; University of Chinese Academy of Sciences)*; Cheng Tan (Zhejiang University & Westlake University); Zhangyang Gao (westlake university); Linzhuang Sun (Shenyang institute of computing technology, Chinese academy of sciences; University of Chinese Academy of Sciences); BiHui Yu (Shenyang institute of computing technology, Chinese academy of sciences); Ruifeng Guo (Shenyang institute of computing technology, Chinese academy of sciences); Stan Z. Li (Westlake University)
关键词:可解性,解耦,时空预测(更广义的)
5. Frequency Enhanced Pre-training for Cross-city Few-shot Traffic Forecasting
链接:https://link.springer.com/chapter/10.1007/978-3-031-70344-7_3
代码:https://github.com/zhyliu00/FEPCross
作者:Zhanyu Liu (Shanghai Jiao Tong University); Jianrong Ding (Shanghai Jiao Tong University); Guanjie Zheng (Shanghai Jiao Tong University)*
关键词:交通预测,预训练,少样本,跨城市迁移
6. Reinventing Node-Centric Traffic Forecasting for Improved Accuracy and Efficiency
链接:https://link.springer.com/chapter/10.1007/978-3-031-70352-2_2
作者:Xu Liu (National University of Singapore)*; Yuxuan Liang (The Hong Kong University of Science and Technology (Guangzhou)); Chao Huang (University of Hong Kong); Hengchang Hu (National University of Singapore); Yushi Cao (Nanyang Technological University); Bryan Hooi (National University of Singapore); Roger Zimmermann (NUS)
关键词:交通预测,预训练,少样本,跨城市迁移
7. Adaptive Sparsity Level during Training for Efficient Time Series Forecasting with Transformers
链接:https://link.springer.com/chapter/10.1007/978-3-031-70341-6_1
作者:Zahra Atashgahi (University of Twente)*; Mykola Pechenizkiy (TU Eindhoven); Raymond Veldhuis (University of Twente); Decebal Constantin Mocanu (University of Luxembourg)
关键词:时序预测,高效,稀疏性
8. Adaptive Seasonal-Trend Decomposition for Streaming Time Series Data with Transitions and Fluctuations in Seasonality
链接:https://link.springer.com/chapter/10.1007/978-3-031-70344-7_25
代码:https://sites.google.com/view/astd-ecmlpkdd/
作者:Thanapol Phungtua-eng (Shizuoka University)*; Yoshitaka Yamamoto
关键词:时序分解,流式数据
9. Diffusion model in Normal Gathering Latent Space for Time Series Anomaly Detection
链接:https://link.springer.com/chapter/10.1007/978-3-031-70352-2_17
作者:Jiashu Han (Harbin Institute of Technology); Shanshan Feng (Centre for Frontier AI Research, ASTAR); Min Zhou (Huawei Technologies co. ltd); Xinyu Zhang (Harbin Institute of Technology Shenzhen); Xutao Li (Harbin Institute of Technology Shenzhen Graduate School); Yew Soon Ong (Nanyang Technological University, Nanyang View, Singapore)
关键词:异常检测,隐扩散模型
10. Permutation Dependent Feature Mixing in TSMixer for Multivariate Time Series Forecasting
链接:https://link.springer.com/chapter/10.1007/978-3-031-70352-2_18
作者:rikuto yamazono (Wakayama University)*; Hirotaka Hachiya (Graduate School of System Engineering, Wakayama University)
关键词:时序预测(多元)
11. MMDL-based Data Augmentation with Domain Knowledge for Time Series Classification
链接:https://link.springer.com/chapter/10.1007/978-3-031-70352-2_24
作者:Xiaosheng Li (Ant Group); Yifan Wu (Peking University)*; Wei Jiang (Ant Group); Ying Li (Peking University); Jianguo Li (Ant Group)
关键词:时序分类,数据增强,领域知识
12. Improving the Evaluation and Actionability of Explanation Methods for Multivariate Time Series Classification
链接:https://link.springer.com/chapter/10.1007/978-3-031-70359-1_11
代码:https://github.com/mlgig/xai4mtsc_eval_actionability
作者:Davide Italo DI Serramazza (University College Dublin)*; Thach Le Nguyen (University College Dublin); Georgiana Ifrim (University College Dublin)
关键词:时序分类,可解释性,评测
13. Functional Latent Dynamics for Irregularly Sampled Time Series Forecasting
链接:https://link.springer.com/chapter/10.1007/978-3-031-70359-1_25
作者:Christian Klötergens (Information Science and Machine Learning Lab University of Hildesheim)*; Vijaya Yalavarthi (Information Systems and Machine Learning Lab, University of Hildesheim); Maximilian Stubbemann (Information Systems and Machine Learning Lab, University of Hildesheim); Lars Schmidt-Thieme (Universität Hildesheim)
关键词:不规则采样的时序预测,常微分方程
14. Graphical Model-Based Lasso for Weakly Dependent Time Series of Tensors
链接:https://link.springer.com/chapter/10.1007/978-3-031-70362-1_15
作者:Dorcas Ofori-Boateng (Portland State University)*; Jaidev Goel (The University Of Texas at Dallas); Yulia R. Gel (The University of Texas at Dallas); Ivor Cribben (University of Alberta)
关键词:图模型,lasso
15. Self-supervised Temporal and Spatial Normality Learning for Time Series Anomaly Detection
链接:https://link.springer.com/chapter/10.1007/978-3-031-70365-2_9
代码:https://github.com/mala-lab/STEN
作者:Yutong Chen (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences)*; Hongzuo Xu (Intelligent Game and Decision Lab (IGDL)); Guansong Pang (Singapore Management University); Hezhe Qiao (Singapore Managment University); Yuan Zhou (Artificial Intelligence Research Center, DII); Mingsheng Shang (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences)
关键词:异常检测,自监督,时空正态性
Applied Data Science Track
时空:16,17 时序:18,19
16. Spatial-Temporal PDE Networks for Traffic Flow Forecasting
链接:https://link.springer.com/chapter/10.1007/978-3-031-70381-2_11
作者:Tianshu Bao (Vanderbilt University)*, Hua Wei (Arizona State University), Junyi Ji (Vanderbilt University), Daniel Work (Vanderbilt University), Taylor T Johnson (Vanderbilt University)
关键词:交通预测,PDE
17. Spatial Transfer Learning for Estimating PM 2.5 in Data-poor Regions
链接:https://link.springer.com/chapter/10.1007/978-3-031-70378-2_24
作者:Shrey Gupta (Emory University)*, Yongbee Park (Inkgle), Jianzhao Bi (University of Washington), Suyash Gupta (University of California, Berkeley), Andreas Züfle (Emory University), Avani Wildani (Emory University), Yang Liu (Emory University)
关键词:PM2.5估计,迁移学习
18. Time Series Clustering for Enhanced Dynamic Allocation in A/B Testing
链接:https://link.springer.com/chapter/10.1007/978-3-031-70378-2_22
作者:Emmanuelle Claeys (IRIT)*, Myriam Maumy (UTT), Pierre Gançarski (University of Strasbourg)
关键词:时序聚类,A/B Testing
19. ExTea: An Evolutionary Algorithm-Based Approach for Enhancing Explainability in Time-Series Models
链接:https://link.springer.com/chapter/10.1007/978-3-031-70381-2_27
作者:Yiran Huang (Karlsruhe Institute of Technology)*, Yexu Zhou (KIT), Haibin Zhao (Karlsruhe Institute of Technology), Likun Fang (Karlsruhe Institute of Technology), Till Riedel (Karlsruhe Institute of Technology), Michael Beigl (Karlsruhe Institute of Technology)
关键词:可解释性
Demo Track
20. CityFlowER: An Efficient and Realistic Traffic Simulator with Embedded Machine Learning Models
链接:https://link.springer.com/chapter/10.1007/978-3-031-70371-3_22
代码:https://github.com/cityflow-project/CityFlowER
作者:Longchao Da, Chen Chu, Weinan Zhang, Hua Wei
关键词:交通模拟
相关链接
Research Track:https://ecmlpkdd.org/2024/program-accepted-papers-research-track/
ADS Track: https://ecmlpkdd.org/2024/program-accepted-papers-ads-track/
Industry Track: https://ecmlpkdd.org/2024/program-accepted-papers-industry-track/
Journal Track:
https://ecmlpkdd.org/2024/program-accepted-papers-industry-track/
Industry Track: https://ecmlpkdd.org/2024/program-accepted-papers-industry-track/
Journal Track:https://ecmlpkdd.org/2024/program-accepted-papers-journal-track/
Demo Track: https://ecmlpkdd.org/2024/program-accepted-papers-demo-track/
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅