Prometheus之Pushgateway使用

news2025/1/24 17:45:53

Pushgateway属于整个架构图的这一部分

The Pushgateway is an intermediary service which allows you to push metrics from jobs which cannot be scraped. The Prometheus Pushgateway exists to allow ephemeral and batch jobs to expose their metrics to Prometheus. Since these kinds of jobs may not exist long enough to be scraped, they can instead push their metrics to a Pushgateway. The Pushgateway then exposes these metrics to Prometheus.

官方解释,Pushgateway是一个“中间人”服务,你可以把短期job的metrics push到Pushgateway,然后Prometheus从Pushgateway那里pull。

想象一下,如果没有Pushgateway,你为了监控short-lived jobs,就得把它们放到Prometheus的targets中,这样target越来越多,而且因为它是短期作业,这个target将长时间处于down的状态,这样确实不太优雅。

短期作业最好是 service-level(不包含特定的机器或实例标签)而不是 machine-level,以便将特定机器或实例的生命周期与推送的指标脱钩。

Pushgateway的另一个应用场景是,在网络不通的环境下充当一个中间人。比如因为网络原因,Prometheus不能直接从被监控对象pull数据,但是可以从Pushgateway那里pull,并且Pushgateway和被监控对象之间网络也是通的。这个场景虽然理论上可行,但是,官方更推荐使用PushProx( which allows Prometheus to traverse a firewall or NAT)

安装使用

到github https://github.com/prometheus/pushgateway 的release下载二进制包,解压后直接运行,默认端口是 9091

修改Prometheus配置文件,将Pushgateway添加为target,然后启动Prometheus

scrape_configs:
  - job_name: "pushgateway"
    static_configs:
      - targets: ["ip:9091"]

可通过向Pushgateway发put 或 post 请求进行数据推送。例:

echo "some_metric 3.14" | curl --data-binary @- http://pushgateway_ip:9091/metrics/job/some_job

去Prometheus就能查到刚刚推送的数据:

需要说明的是,因为Pushgateway是作为一个target写在Prometheus配置文件中的,所以Prometheus自动加了job="pushgateway"**instance**="192.168.243.99:9091"的标签,而自己加的job=some_job标签,因为和默认标签重名,被重命名成了exported_job。要想自定义的标签覆盖默认标签的修改Prometheus配置文件,增加honor_labels: true :

scrape_configs:
  - job_name: "pushgateway"
    honor_labels: true
    static_configs:
      - targets: ["ip:9091"]

将数据清空,再次向Pushgateway推送数据,查看发现自定义标签已经覆盖了默认标签:

使用Pushgateway需要注意的是:向Pushgateway推送的数据,Pushgateway会一直保存着,下次Prometheus来pull数据时,Pushgateway又会把之前保存的数据交给Prometheus(见上图,查5分钟内的数据,尽管我只向Pushgateway推了一次数据),除非手动调用删除接口:curl -X DELETE http://127.0.0.1:9091/metrics/job/some_job

原文:The Pushgateway never forgets series pushed to it and will expose them to Prometheus forever unless those series are manually deleted via the Pushgateway’s API

Prometheus还支持多种语言的客户端(如java/go/python 等)向Pushgateway推送数据,可参考官方文档各语言的示例

更多详细文档,参考github Pushgateway

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2188220.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法

随着大型语言模型(LLMs)的迅速普及,如何有效地引导它们生成安全、适合特定应用和目标受众的内容成为一个关键挑战。例如,我们可能希望语言模型在与幼儿园孩子互动时使用不同的语言,或在撰写喜剧小品、提供法律支持或总结新闻文章时采用不同的风格。 目前,最成功的LLM范式是训练…

使用python基于DeepLabv3实现对图片进行语义分割

DeepLabv3 介绍 DeepLabv3 是一种先进的语义分割模型,由 Google Research 团队提出。它在 DeepLab 系列模型的基础上进行了改进,旨在提高图像中像素级分类的准确性。以下是 DeepLabv3 的详细介绍: 概述DeepLabv3 是 DeepLab 系列中的第三代…

无人机控制和飞行、路径规划技术分析

无人机控制和飞行、路径规划技术是现代无人机技术的核心组成部分,它们共同决定了无人机的性能和应用范围。以下是对这些技术的详细分析: 一、无人机控制技术 无人机控制技术主要涉及飞行控制系统的设计、传感器数据的处理以及指令的发送与执行。飞行控…

新闻推荐系统开发:Spring Boot实践指南

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常适…

厂商资源分享网站

新华三(H3C)是一家中国知名的网络设备供应商,提供网络设备、网络解决方案和云计算服务。公司成立于2003年,是华为公司和惠普公司合资的企业,总部位于中国深圳。 华为(Huawei)是一家全球知名的电…

本地运行LLama 3.2的三种方法

大型语言模型(LLMs)已经彻底改变了AI领域,小型模型也在崛起。因此,即使是在旧的PC和智能手机上运行先进的LLMs也成为了可能。为了给大家一个起点,我们将探索三种不同的方法来本地与LLama 3.2进行交互。 先决条件 在我…

【2022工业3D异常检测文献】AST: 基于归一化流的双射性产生不对称学生-教师异常检测方法

Asymmetric Student-Teacher Networks for Industrial Anomaly Detection 1、Background 所谓的学生-教师网络,首先,对教师进行训练,以学习语义嵌入的辅助性训练任务;其次,训练学生以匹配教师的输出。主要目的是让学生…

YOLOv11改进 | Conv篇 | YOLOv11引入SAConv模块

1. SAConv介绍 1.1 摘要: 许多现代物体检测器通过使用三思而后行的机制表现出出色的性能。 在本文中,我们在目标检测的主干设计中探索了这种机制。 在宏观层面,我们提出了递归特征金字塔,它将特征金字塔网络的额外反馈连接合并到自下而上的骨干层中。 在微观层面,我们提出…

LabVIEW提高开发效率技巧----属性节点优化

在LabVIEW开发中,优化代码的效率和性能是非常重要的,尤其是在涉及前面板控件的属性节点时。频繁使用属性节点可能会导致程序执行速度的明显下降,特别是在处理大量数据或高频率操作时。下面详细介绍一些在LabVIEW开发中优化属性节点使用的技巧…

Vue3常用API总结

因为这个月的月初给自己定了个小目标,学完Vue3的基本使用,并使用Vue3亲手做一个小项目(稍微透露一下,我制作的是一个小工具,现在已经完成了90%了,这个月月底之前会通过博客的形式向大家展示&…

如何提高游戏本地化的质量使用QE门户网站Logrus IT

高质量的游戏本地化是全球市场成功的关键。这尤其适用于AAA和AA级别的游戏,玩家在这些游戏中投入了大量资金,并期望从中获得完美的游戏体验。尽管公司做出了努力,但传统的质量控制方法并不总是能够防止所有错误和本地化不准确。让我们更详细地…

【深度学习】交叉熵

交叉熵(Cross-Entropy)是信息论中的一个重要概念,也是在机器学习和深度学习中用于分类任务的常见损失函数。它衡量的是两个概率分布之间的差异,特别是模型的预测概率分布与真实分布的差异。 交叉熵最初是从信息论引入的&#xff0…

检查jar冲突,查找存在相同class的jar

写在前面 本文看下如何查找jar冲突,即查找哪些jar包中存在相同的class。如果是存在相同jar的不同版本,基本一眼就能看出来,然后结合maven的依赖关系将其剔除掉即可,但是当你遇到了有人手动拷贝某些class到jar包中导致冲突的情况时…

【高频SQL基础50题】21-25

我又回来了。 目录 1.删除重复的电子邮箱 2.文章浏览 I 3.上升的温度 4.各赛事的用户注册率 5.超过 5 名学生的课 1.删除重复的电子邮箱 高级字符串检索题。 使用自连接的方式,面对上亿级别数据,效率也可以很高。 # Write your MySQL query st…

【算法】链表:92.反转链表(medium)+双指针

系列专栏 《分治》 《模拟》 《Linux》 目录 1、题目链接 2、题目介绍 3、解法 (双指针) 4、代码 是 206. 反转链表 - 力扣(LeetCode)的类型题,且难度提升,可以先完成206,然后参照206的…

MATLAB工具库:数据统计分析工具MvCAT、MhAST等

MATLAB工具库:数据统计分析工具MvCAT、MhAST等 工具1:Multivariate Copula Analysis Toolbox (MvCAT)MATLAB中运行 工具2:Multi-hazard Scenario Analysis Toolbox (MhAST) 参考 The University of California-软件库-Software 工具1&#xf…

10.3学习

1.循环依赖 循环依赖其实就是循环引用,也就是两个或者两个以上的 Bean 互相持有对方,最终形成闭环。比如A 依赖于B,B又依赖于A Spring中循环依赖场景有: prototype 原型 bean循环依赖 构造器的循环依赖(构造器注入)…

mysql-索引笔记

索引 1、什么是索引 索引是对数据库中数据的一种结构化表示。它像一本书的目录,能够快速定位信息,而无需逐行扫描所有数据。 索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。 2、索引的常见模型 2.1.哈希表 用一个哈希函…

ChatGPT推出Canvas功能

"Canvas" 是 OpenAI 推出的全新界面,专为增强写作和编程协作而设计。它让用户能够在聊天之外更高效地进行编辑、审阅和反馈,提供了内联编辑、代码调试和文档版本控制等功能。目前,"Canvas" 已面向 ChatGPT Plus 和 Team …