note
- 推出两个多模态模型,深度思考模型 long-CoT 对标 o1,通用模型 short-CoT 模型对标 gpt-4o。
文章目录
- note
- 一、kimi 1.5模型训练流程
- 预训练
- SFT训练
- long-CoT SFT
- RL训练
- long2short
- 小结
- Reference
一、kimi 1.5模型训练流程
推出两个多模态模型,深度思考模型 long-CoT 对标 o1,通用模型 short-CoT 模型对标 gpt-4o。
预训练
语言数据涵盖五个领域:英语、中文、代码、数学推理和知识。多模态数据,包括图像描述、图文交错[^1]、OCR数据、知识以及问答数据集,使我们的模型能够获得视觉 - 语言能力。严格的质量控制确保了整个预训练数据集的相关性、多样性和平衡性。
SFT训练
100w文本sft数据(任务具体分布见图)和100w多模态sft数据(没说具体分布,光列任务),通过一些 infra 的优化,先训 32k,再训 128k。
- 非推理任务:包括问答、写作和文本处理,首先通过人工标注构建了一个种子数据集。这个种子数据集用于训练一个种子模型。随后,收集了各种prompt,并使用种子模型为每个提示生成多个响应。标注者随后对这些响应进行排名,并优化排名最高的响应以产生最终版本。
- 对于数学和编码等推理任务,基于规则和基于奖励建模的验证比人工判断更准确、更高效,使用拒绝采样来扩展SFT数据集。
普通SFT数据集包含大约100万文本数据,50万一般问答,20万编码,20万数学和科学,5千创意写作,2万长上下文任务,如总结、文档问答、翻译和写作。此外,构建了100万文本视觉数据,涵盖各种类别,包括图表解读、OCR、图像引导的对话、视觉编码、视觉推理以及带有视觉辅助的数学/科学问题。 我们首先在32k token的序列长度下训练模型1个epoch,然后在128k token的序列长度下再训练1个epoch。在第一阶段(32k),学习率从 2×10−5 衰减到 2×10−6,然后在第二阶段(128k)重新升温到 1×10−5,最后衰减到 1×10−6。为了提高训练效率,将多条训练数据 packing 到每个单独的训练序列中。
long-CoT SFT
从 RL prompt 集合里采 prompt,通过提示工程构建了一个小而高质量的 long-CoT warmup 数据集,包含文本和图像输入的经过准确验证的推理路径。
生成的 warmup 数据集旨在封装人类推理的基本认知过程,如:
规划(模型在执行前系统地概述步骤)
评估(对中间步骤进行批判性评估)
反思(使模型重新考虑并完善其方法)
探索(鼓励考虑替代解决方案)
RL训练
和 deepseek 类似,也是用了 on-policy 的强化学习策略(不过不是GRPO,而是在线策略镜像下降的变体)。kimi 在设计奖励函数时引入长度惩罚来缓解模型“过度思考”,主打一个引导模型产生短思考且结果正确的回答。
long2short
包括权重平均、拒绝采样和SFT、强化学习训练等一套流程,使用 long-CoT 模型来提升 short-CoT 模型能力。
模型融合。这里说的是权重融合,long/short 模型的权重直接融合。这种在业界已经用的很多了,可以在业务中尝试起来,而且不用训练。
- 最短拒绝采样。一次生成 x 条样本,把最短的那条选出来,前提是结果要对。
- 长短样本的 DPO。和上面类似(一条正样本),这里是构建的是正负 pair 样本(两条样本),短而正确的作为正样本,错误的是负样本或者1.5长于短样本的作为负样本。
- long2short强化学习。在一阶段 RL 之后,使用长度惩罚来减少模型生成的长度。
小结
Test-time scaling + RL 或许是接下来要重点聚焦的大模型技术了
Reference
[1] Kimi k1.5 的技术报告:https://arxiv.org/abs/2501.12599
[2]《自顶向下方式深度解读 DeepSeek-R1》:https://bruceyuan.com/post/deepseek-r1-paper-reading-notes.html
[3]知乎大佬木尧:https://www.zhihu.com/people/muyaostudio,一张图速通 Kimi-k1.5 论文
[4]DeepSeek-R1 coldstart 数据:https://bruceyuan.com/post/deepseek-r1-paper-reading-notes.htmlChao
[6]bilibili:https://space.bilibili.com/12420432
[7]YouTube:https://www.youtube.com/@bbruceyuan
[8] 细节之王 Kimi K1.5,大模型算法工程师复现推理模型必读文章之一
[9] Kimi k1.5 背后的长长长长长思考