【ADC】噪声(1)噪声分类

news2024/11/26 0:44:07

概述

本文学习于TI 高精度实验室课程,总结 ADC 的噪声分类,并简要介绍量化噪声和热噪声。


文章目录

  • 概述
  • 一、ADC 中的噪声类型
  • 二、量化噪声
  • 三、热噪声
  • 四、量化噪声与热噪声对比


一、ADC 中的噪声类型

ADC 固有噪声由两部分组成:第一部分是量化噪声,这实际上是由于需要将无限数量的可能模拟输入映射到有限数量的数字输出代码而产生的误差。该误差将平滑的正弦波输入转换为阶梯形输出,如下图所示。

在这里插入图片描述

第二种噪声是热噪声,它是由电导体的固有特性引起的。由于这种噪声不是模数转换过程的产物,因此即使没有输入信号,它仍然是存在的。上图右侧显示了 ADC 的输入短路至中间电源的情况。蓝色输出信号是时域热噪声信号。


二、量化噪声

所有 ADC 中都存在这两种类型的噪声,但通常其中一种噪声占主导地位,具体取决于 ADC 的分辨率。下图是 ADC 的理想传递函数。如果此处显示的图表上的绿线代表纯模拟信号,则红线代表量化输出,不受偏移或增益误差的影响。注意,此传递函数延伸到象限 1 和 3,假设 ADC 使用二进制补码编码格式。

在这里插入图片描述

如前所述,量化噪声源于将无限数量的模拟输入电压映射到有限数量的可用数字代码之一的过程。例如,假设这个 4 位 ADC 的满量程输入为 ±2.5 V,则输出代码 0100 可以对应 1.093 至 1.406V 之间的任何模拟输入电压。对于任何 ADC,这个步长称为最低有效位,LSB。1 LSB 的值是 ADC 理论上可以解析的最小信号,但实际限制通常使 ADC 无法真正解析到 1LSB 的水平。如屏幕上的公式所示,LSB 大小与 ADC 的参考电压成正比,与 ADC 的分辨率成反比。这种关系有助于解释为什么分辨率更高的 ADC 通常提供更好的噪声性能。更多可用代码会降低 LSB 大小,从而降低量化噪声。

下图显示的是绿色波形是通用正弦波输入。如果将上一张图片中的 4 位 ADC 传递函数应用于此正弦波,则输出将类似于右侧的量化结果。与 ADC 传递函数一样,红色显示的量化输出具有“阶梯”形状。每个阶梯代表一个 ADC 代码,每个代码与无限数量的可能模拟输入电压相关,这些电压受 ADC 的 LSB 大小限制。

在这里插入图片描述

从这些图中可以看出,量化输出不一定能很好地再现输入正弦波。由于我们在本例中使用的是 4 位 ADC,因此转换器没有足够的分辨率来精确复制输入信号。如前所述,更高分辨率的 ADC 会同时减小右侧图中“阶梯”的宽度和高度,从而产生更接近正弦波的量化输出。

下图显示的是组合图,红色量化输出叠加在绿色模拟正弦波输入上。此图下方是另一张图,绘制了模拟输入和量化输出之间的差异。此紫色图表表示组合图上每个点的量化噪声幅度,称为“锯齿”形误差。

在这里插入图片描述

如果放大 LSB 误差图的一部分,可以看到连续模拟输入和阶梯形输出之间的差异如何导致锯齿波形。注意,LSB 误差图在正负半个 LSB 之间变化。在一个 LSB 内,ADC 无法确定实际模拟输入电压的位置。直流信号也是如此,但没有频率分量,量化“噪声”实际上在 ADC 输出中表现为偏移误差,也称为量化误差。

三、热噪声

当量化直流信号(例如 2.5V)时,理想情况下期望没有量化误差,并输出单个代码,如下图顶部所示。然而,对于许多 ADC,即使没有信号,也能观察到噪声。例如,前文所述的热噪声框图将 ADC 的输入短路至中间电源。在这种情况下测量的噪声称为热噪声。与特定于模拟到数字或数字到模拟转换过程的量化噪声不同,由于电导体内电荷的随机运动,热噪声是所有电气元件所固有的。下图显示了热噪声在时域中的样子,以及 ADC 输出的可能分布代码。

在这里插入图片描述

热噪声很大程度上是 ADC 设计的结果,当 ADC 的 LSB 大小较小时,可以观察到热噪声,这通常仅在高分辨率 ADC 中出现。对于低分辨率 ADC,时域噪声图看起来更类似于理想情况,即具有单个输出代码且几乎没有量化噪声。其次,ADC 中的热噪声被认为是除量化噪声之外的所有其他内部噪声源的组合。在系统级,包括放大器和电压基准在内的其他组件可能会影响测量到的热噪声。最后,热噪声频率是具有高斯分布的宽带,因此总 ADC 噪声性能应使用平方和根将量化和热噪声相加。


四、量化噪声与热噪声对比

在频域中,量化噪声和热噪声在整个频率范围内通常看起来是均匀的,如下图的功率与频率图所示。热噪声通常具有宽频谱,显示为蓝色频率图。量化噪声也是宽带的,这是因为之前看到的“锯齿”形波形的频谱很宽,混叠回 0 Hz 至采样频率一半的频率范围。虽然热噪声显示低于量化噪声水平,但情况并非总是如此。对于许多 ADC,热噪声的幅度大于量化噪声。对于其他 ADC,热噪声和量化噪声可能大致相等。ADC 的分辨率通常决定了不同噪声水平的幅度。对于这个特定的频率图,可以得出结论这是一个低分辨率 ADC,因为量化噪声占主导地位。在这种情况下,与热噪声相比,ADC 具有相对较大的 LSB 大小。

在这里插入图片描述

另一方面,如果观察高分辨率 ADC 中的噪声水平,会看到量化噪声水平低于热噪声水平,如图所示。量化噪声水平较低是由于高分辨率 ADC 中的 LSB 大小要小得多。例如,使用5 伏参考电压且无增益的 24 位 delta-sigma ADC 的 LSB 大小小于 300 nV,远低于 ADC的热噪声水平。

在这里插入图片描述

ADC 的分辨率通常决定哪种类型的噪声占主导地位。对于较低分辨率的 ADC,LSB 大小较大,导致量化噪声水平高于热噪声水平,如下图左侧所示。相反,在较高分辨率的 ADC 中,我们可以观察到由于量化噪声水平相对较低而产生的热噪声,如右图所示。

在这里插入图片描述

热噪声是 ADC 的一个特性,用户无法改变。但是,由于量化噪声是 ADC 分辨率和参考电压的乘积,因此可以在此处进行更改以提高系统性能。例如,如果系统允许,可以在较低分辨率 ADC 中使用较小的参考电压来降低 LSB 大小和随后的量化噪声幅度,这可以降低 ADC 的总噪声。对于热噪声占主导地位的较高分辨率 ADC,实际上可以使用更大的参考电压来增加 ADC 的输入范围,同时确保将量化噪声水平保持在热噪声以下。假设其他系统没有变化,增加的参考电压可以实现更好的信噪比。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2187690.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【树莓派系列】树莓派wiringPi库详解,官方外设开发

树莓派wiringPi库详解,官方外设开发 文章目录 树莓派wiringPi库详解,官方外设开发一、安装wiringPi库二、wiringPi库API大全1.硬件初始化函数2.通用GPIO控制函数3.时间控制函数4.串口通信串口API串口通信配置多串口通信配置串口自发自收测试串口间通信测…

Django 后端数据传给前端

Step 1 创建一个数据库 Step 2 在Django中点击数据库连接 Step 3 连接成功 Step 4 settings中找DATABASES Step 5 将数据库挂上面 将数据库引擎和数据库名改成自己的 Step 6 在_init_.py中加上数据库的支持语句 import pymysql pymysql.install_as_MySQLdb() Step7 简单创建两…

以企业的视角进行大学生招聘

课程来源:中国计算机学会---朱颖韶(资深人力资源领域--HR) 一、招聘流程 1.简历->门槛 注重:专业学历、行业经验 2.笔试面试->专业知识与技能 3.简历面试-> 过往的成果 4.面试 沟通能力、学习力-----了解动机、价值观…

Pikachu-Sql Inject-insert/update/delete注入

insert 注入 插入语句 insert into tables values(value1,value2,value3); 如:插入用户表 insert into users (id,name,password) values (id,username,password); 当点击注册 先判断是否有SQL注入漏洞,经过判断之后发现存在SQL漏洞。构造insert的pa…

8644 堆排序

### 思路 堆排序是一种基于堆数据结构的排序算法。堆是一种完全二叉树,分为最大堆和最小堆。堆排序的基本思想是将待排序数组构造成一个最大堆,然后依次将堆顶元素与末尾元素交换,并调整堆结构,直到排序完成。 ### 伪代码 1. 读取…

自闭症干预寄宿学校:专业治疗帮助孩子发展

自闭症干预寄宿学校:星贝育园的专业治疗助力孩子全面发展 在自闭症儿童的教育与康复领域,寄宿学校以其独特的教育模式和全面的关怀体系,为众多家庭提供了重要的选择。广州星贝育园自闭症儿童寄宿制学校,作为这一领域的佼佼者&…

达梦core文件分析(学习笔记)

目录 1、core 文件生成 1.1 前置条件说明 1.2 关于 core 文件生成路径的说明 1.3查看 core 文件的前置条件 2、查看 core 文件堆栈信息 2.1 使用gdb 2.2 使用达梦dmrdc 3、core 分析过程 3.1 服务端主动 core 3.2因未知异常原因导致的 core 4、测试案例 4.1测试环境…

(十八)、登陆 k8s 的 kubernetes-dashboard 更多可视化工具

文章目录 1、回顾 k8s 的安装2、确认 k8s 运行状态3、通过 token 登陆3.1、使用现有的用户登陆3.2、新加用户登陆 4、k8s 可视化工具 1、回顾 k8s 的安装 Mac 安装k8s 2、确认 k8s 运行状态 kubectl proxy kubectl cluster-info kubectl get pods -n kubernetes-dashboard3、…

网页前端开发之Javascript入门篇(4/9):循环控制

Javascript循环控制 什么是循环控制? 答:其概念跟 Python教程 介绍的一样,只是语法上有所变化。 参考流程图如下: 其对应语法: var i 0; // 设置起始值 var minutes 15; // 设置结束值(15分钟…

Stream流的终结方法(一)

1.Stream流的终结方法 2.forEach 对于forEach方法,用来遍历stream流中的所有数据 package com.njau.d10_my_stream;import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.function.Consumer; import java.util…

安全帽头盔检测数据集 3类 12000张 安全帽数据集 voc yolo

安全帽头盔检测数据集 3类 12000张 安全帽数据集 voc yolo 安全帽头盔检测数据集介绍 数据集名称 安全帽头盔检测数据集 (Safety Helmet and Person Detection Dataset) 数据集概述 该数据集专为训练和评估基于YOLO系列目标检测模型(包括YOLOv5、YOLOv6、YOLOv7…

SpringCloud入门(十一)路由过滤器和路由断言工厂

一、路由过滤器 路由过滤器( GatewayFilter )是网关中提供的一种过滤器,可以对进入网关的请求和微服务返回的响应做处理: 如图:网关路由过滤器: 路由过滤器的作用是: 1.对路由的请求或响应做加…

第二十章(自定义类型,联合和枚举)

1. 联合体类型的声明 2. 联合体的特点 3. 联合体⼤⼩的计算 4. 枚举类型的声明 5. 枚举类型的优点 6. 枚举类型的使⽤ 光阴如骏马加鞭一、联合体 概念:像结构体一样,联合体也是由一个或者多个成员组成的,这些成员也可以是不同的类型。 …

JavaSE篇:文件IO

一 认识文件 在硬盘这种持久化存储的I/O设备或其他存储介质中 ,当我们想要进行数据保存时,往往不是保存成⼀个整体,⽽是独⽴成⼀个个的单位进⾏保存,这个独⽴的单位就被抽象成⽂件的概念。就类似办公桌上的⼀份份真实的⽂件⼀般。…

疾风气象大模型如何预测气象数据,预测数据怎么获得

随着科技的快速发展,人工智能和大数据技术逐渐渗透到各个领域,气象预测也不例外。过去,气象预测主要依赖于物理模型,结合大气、海洋、陆地等系统的观测数据,通过复杂的数值计算来推测未来天气。而如今,大模…

八、跳跃、闪避

一、人物跳跃功能 1、动画 设置一个bool值 条件设置为true 2、逻辑 实现跳跃,一定有IsGround;判断是否为地面,进行跳跃功能 写一个跳跃和一个条约结束方法 跳跃设置为false,结束设置为true 3、代码 public void Jump() {if…

Ray_Tracing_In_One_Weekend下

1Lambertian漫反射材质 一个物体的材质,可以分成两部分来看,因为物体没有绝对光滑和绝对粗糙 漫反射:由于物体粗糙,那么对于微小平面,光线会向四周反射,光源的一部分光线传回人眼 镜面反射:假…

C++ 类和对象的初步介绍

文章目录 1.面向过程和面向对象的初步认识2.类的引入3.类的定义4. 类的访问限定符及封装4.1 访问限定符4.2 封装 5.类的作用域6.类的实例化 1.面向过程和面向对象的初步认识 C语言是面向过程的,关注的过程,分析出求解问题的步骤,通过函数调用…

OpenCV Canny()函数

OpenCV Canny()函数被用来检测图像物体的边缘。其算法原理如下: 高斯滤波:使用高斯滤波器平滑图像以减少噪声。高斯滤波器是一种线性滤波器,可以消除图像中的高频噪声,同时保留边缘信息。计算梯度强度和方向:使用Sobe…

教资备考--高中数学(仅为高中数学梳理)

按照高中学习数学梳理的方案进行整理