Python或R时偏移算法实现

news2024/12/21 23:47:59

🎯要点

  1. 计算单变量或多变量时序距离,使用欧几里得、曼哈顿等函数量化不同时序差异。
  2. 量化生成时序之间接近度相似性矩阵。
  3. 使用高尔距离和堪培拉距离等相似度测量。
  4. 实现最小方差匹配算法,绘制步进模式的图形表示。
  5. 其他语言包算法实现。

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python距离矩阵

在数学、计算机科学,尤其是图论中,距离矩阵是一个方阵(二维数组),其中包含一组元素之间成对的距离。根据所涉及的应用,用于定义此矩阵的距离可能是也可能不是度量。如果有 N N N 个元素,则此矩阵的大小将为 N × N N \times N N×N。在图论应用中,元素通常被称为点、节点或顶点。

我们计算两个矩阵 x 和 y 的距离矩阵。两个矩阵的维度相同 (3, 2)。因此距离矩阵的维度为 (3,3)。使用 p=2,距离计算为闵可夫斯基 2 范数(或欧几里得距离)。

import numpy as np
from scipy.spatial import distance_matrix 

x = np.array([[1,2],[2,1],[2,2]])
y = np.array([[5,0],[1,2],[2,0]])

print("matrix x:\n", x)
print("matrix y:\n", y)

dist_mat = distance_matrix(x, y, p=2)
print("Distance Matrix:\n", dist_mat)
matrix x:
[[1 2]
 [2 1]
 [2 2]]
matrix y:
[[5 0]
 [1 2]
 [2 0]]
Distance Matrix:
[[4.47213595    2.23606798]
 [3.16227766 1.41421356 1.]
 [3.60555128 1.   2.    ]]

我们计算两个矩阵 x 和 y 的距离矩阵。两个矩阵的维度不同。矩阵 x 的维度为 (3,2),矩阵 y 的维度为 (5,2)。因此距离矩阵的维度为 (3,5)。

import numpy as np
from scipy.spatial import distance_matrix 

x = np.array([[1,2],[2,1],[2,2]])
y = np.array([[0,0],[0,0],[1,1],[1,1],[1,2]])

print("matrix x:\n", x)
print("matrix y:\n", y)

dist_mat = distance_matrix(x, y, p=2)

print("Distance Matrix:\n", dist_mat)

我们使用单个矩阵(即 x)计算距离矩阵。矩阵 x 的维度为 (3,2)。相同的矩阵 x 作为参数 y 给出。距离矩阵的维度为 (3,3)。

import numpy as np
from scipy.spatial import distance_matrix 

x = np.array([[1,2],[2,1],[2,2]])

print("matrix x:\n", x)
dist_mat = distance_matrix(x, x, p=2)
print("Distance Matrix:\n", dist_mat)

我们计算两个矩阵 x 和 y 的距离矩阵。两个矩阵的维度不同。矩阵 x 的维度为 (3,2),矩阵 y 的维度为 (5,2)。因此距离矩阵的维度为 (3,5)。使用 p=1,距离计算为闵可夫斯基1 范数(或曼哈顿距离)。

import numpy as np
from scipy.spatial import distance_matrix 

x = np.array([[1,2],[2,1],[2,2]])
y = np.array([[5,0],[1,2],[2,0]])

print("matrix x:\n", x)
print("matrix y:\n", y)

dist_mat = distance_matrix(x, y, p=1)
print("Distance Matrix:\n", dist_mat)

我们计算两个矩阵 x 和 y 的距离矩阵。两个矩阵的维度均为 (2, 5)。因此距离矩阵的维度为 (3,5)。使用 p=2,距离计算为闵可夫斯基 2 范数(或欧几里得距离)。

import numpy as np
from scipy.spatial import distance_matrix 

x = np.array([[1,2,3,4,5],[2,1,0,3,4]])
y = np.array([[0,0,0,0,1],[1,1,1,1,2]])

print("matrix x:\n", x)
print("matrix y:\n", y)

dist_mat = distance_matrix(x, y, p=2)
print("Distance Matrix:\n", dist_mat)

👉参阅、更新:计算思维 | 亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2183669.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

D24【 python 接口自动化学习】- python 基础之判断与循环

day24 while循环 学习日期:20241001 学习目标:判断与循环--34 while循环:需要多次重复执行某段程序时,怎么做? 学习笔记: 循环结构简介 while循环语法 代码实现 循环的退出方法 执行出错,异…

复合系统推文

今天推出的是复合系统协调度这个模型的工具。 参考文献:《“干线公路—城市结点”复合系统协调度分析模型》 复合系统整体协调度模型以协同学的序参量原理和役使原理为基础,模型的参变量选择是模型合理性的前提, 重点选择在整个系统发展演变过程中起主…

CSP-J模拟赛(1)补题报告

前言: 1.交替出场(alter) :10 2.翻翻转转(filp):0 3.方格取数(square):0 4.圆圆中的方方(round):0 总结一下: 第一次考,没爆零就是胜…

锂电池SOC估计 | Matlab基于BP神经网络的锂电池SOC估计

锂电池SOC估计 | Matlab基于BP神经网络的锂电池SOC估计 目录 锂电池SOC估计 | Matlab基于BP神经网络的锂电池SOC估计预测效果基本描述程序设计参考资料 预测效果 基本描述 锂电池SOC估计 | Matlab基于BP神经网络的锂电池SOC估计 运行环境Matlab2023b及以上。 要实现基于BP神…

鼓组编曲:鼓编写技巧之进鼓加花编写

为了方便快速查阅和运用一些教程笔记,个人记性有时可能不是特别好,所以只能疯狂做笔记了,制作以下图文笔记,仅供参考…… 鼓组加花 鼓的变动 进鼓后然后就可以动次打次了 下面是2个底鼓的加花

基于投影滤波算法的rick合成地震波滤波matlab仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 RICK合成地震波模型 4.2 投影滤波算法原理 5.完整工程文件 1.课题概述 基于投影滤波算法的rick合成地震波滤波matlab仿真。分别通过标准的滤波投影滤波以及卷积滤波投影滤波对合成地震剖面进行滤波…

SQL第10课挑战题

1. 从OrderItems表中返回每个订单号order_num各有多少行数order_lines,并按order_lines对结果进行排序 2. 返回名为cheapest_item的字段,该字段包含每个供应商成本最低的产品(使用products表中的prod_price),然后从最低成本到最高…

Redis篇(缓存机制 - 基本介绍)(持续更新迭代)

目录 一、缓存介绍 二、经典三缓存问题 1. 缓存穿透 1.1. 简介 1.2. 解决方案 1.3. 总结 2. 缓存雪崩 2.1. 简介 2.2. 解决方案 2.3. 总结 3. 缓存击穿 3.1. 简介 3.2. 解决方案 3.3. 总结 4. 经典三缓存问题出现的根本原因 三、常见双缓存方案 1. 缓存预热 1…

MQ高级:RabbitMQ小细节

在之前的学习中,我们只介绍了消息的发送,但是没有考虑到异常的情况,今天我们就介绍一些异常情况,和细节的部分。 目录 生产者可靠性 生产者重连 生产者确认 MQ可靠性 持久化 Lazy Queue 消费者可靠性 消费者确认机制 失…

LoadRunner实战测试解析:记录一次性能测试过程

环境准备 PC: Windows7/XP LoadRunner11: 与win10及以上版本不兼容 Nmon: 性能监控工具,部署到被测服务器 LoadRunner破解安装 下载地址:https://pan.baidu.com/s/1WJjcFWhrkWW-GgYwXdEniQ 提取码:f4z…

基于Spark的汽车行业大数据分析及可视化系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…

NetApp 混合闪存 FAS 统一存储平台

挑战 简化内部和公有云中的数据管理 各种规模的企业在精简其存储运维方面正面临越来越大的挑战。他们存储和备份的数据量不断增长,而预算却在缩减。他们需要一个既能满足内部环境要求,又能结合公有云战略的解决方案。 解决方案 兼顾容量与性能的存储&…

设计模式-策略模式-200

优点:用来消除 if-else、switch 等多重判断的代码,消除 if-else、switch 多重判断 可以有效应对代码的复杂性。 缺点:会增加类的数量,有的时候没必要为了消除几个if-else而增加很多类,尤其是那些类型又长又臭的 原始代…

scratch棒球运动 2024年9月中国电子学会图形化编程 少儿编程 scratch编程等级考试一级真题和答案解析

目录 scratch棒球运动 一、题目要求 1、准备工作 2、功能实现 二、案例分析 1、角色分析 2、背景分析 3、前期准备 三、解题思路 1、思路分析 2、详细过程 四、程序编写 五、考点分析 六、 推荐资料 1、入门基础 2、蓝桥杯比赛 3、考级资料 4、视频课程 5、…

进程--信号量

信号量是什么 资源的竞争 资源竞争 : 当多个进程同时访问共享资源时,会产生资源竞争,最终最导致数据混乱临界资源 : 不允许同时有多个进程访问的资源,包括硬件资源(CPU、内存、存储器以及其他外围设备)与软件资源(共享代码段、共享数据结构…

SpringCloudEureka实战:搭建EurekaServer

1、依赖引入 <dependencies><!-- 注册中心 --><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId></dependency> </dependencies> <de…

66.对cplusplus网的strtok函数的详细解释(补第56篇的翻译)

56.【C语言】字符函数和字符串函数(strtok函数) 点我跳转 目录 56.【C语言】字符函数和字符串函数(strtok函数) 点我跳转 1.原文 2. 翻译 1.原文 原文链接: cplusplus的介绍 点我跳转 2. 翻译 函数 strtok char * strtok ( char * str, const char * delimiters ); Spli…

如何构建一个生产级的AI平台(3)?

书接上回&#xff0c;继续往下讲,本节会说一下模型的路由和网关 模型的路由和网关 随着应用程序复杂性的增加和涉及的模型越来越多&#xff0c; 出现了两种类型的工具来帮助使用多个模型&#xff1a;路由和网关 1. 路由 应用程序可以使用不同的模型来响应不同类型的查询。 …

平衡二叉搜索树删除的实现

前言 上期讲了平衡二叉搜索树的插入&#xff0c;这一期我们来讲讲删除。同时&#xff0c;二叉搜索树的简介不会出现在本篇博客之中&#xff0c;如有需要可以查看上一篇博客《平衡二叉搜索树插入的实现》。 平衡二叉搜索树插入的实现-CSDN博客文章浏览阅读659次&#xff0c;点赞…

三、I/O控制器

1.主要功能 接受和识别CPU发出的命令(要有控制寄存器) 向CPU报告设备的状态(要有状态寄存器) 数据交换(要有数据寄存器&#xff0c;暂存输入/输出的数据) 地址识别(由I/0逻辑实现) 2.组成 CPU与控制器之间的接口(实现控制器与CPU之间的通信) I/0逻辑(负责识别CPU发出的命…