【AI学习】DDPM 无条件去噪扩散概率模型实现(pytorch)

news2024/11/18 19:47:41

这里主要使用pytorch实现基本的无条件去噪扩散模型,理论上面的推导这里不重点介绍。

原文理论参考:

前向和反向过程示意图
前向和反向过程示意图

前向过程和后向过程

扩散过程包括正向过程和反向过程。前向过程是基于噪声调度的预定马尔可夫链。噪声表是一组方差 {\beta}_{1}, {\beta}_{2}, ... ,{\beta}_{t},它们控制构成马尔可夫链的条件正态分布。前向过程是按照预定好的noise scheduler 对干净图像(x_{0})加入噪声,迭代生成一系列的噪声版本x_{1},x_{2},...,x_{T}

前向过程马尔科夫链

上面的公式是前向过程的数学表示,但直观上我们可以将其理解为一个序列,在该序列中我们逐渐将数据示例 X 映射到纯高斯噪声。在中间时间步长 t 处,我们得到了 X 的噪声版本,在最终时间步长 T 处,我们得到了近似受标准正态分布支配的纯噪声。当我们构建扩散模型时,我们需要选择噪声表。例如,在 DDPM 中,我们的噪声表具有从 1e-4 到 0.02 线性增加方差的 1000 个时间步长。同样重要的是要注意,我们的前向过程是静态的,这意味着我们选择noise scheduler作为扩散模型的超参数,并且我们不训练前向过程,因为它已经明确定义。 

关于前向过程,一个关键代码实操细节是,因为分布是正态分布,所以我们可以在数学上推导一个称为“扩散核”的分布,它是给定初始数据点的前向过程中任何中间值的分布。这使我们能够绕过在前向过程中迭代添加 t-1 级噪声的所有中间步骤,以获得具有 t 时间处噪声的图像,这将在稍后训练模型时派上用场。这在数学上表示为:

 其中,\alpha_{t} 是从时间点0到时间t的1-\beta_{i} 的累积乘积,对照上面的公式,很快可以理解\alpha_{t} 的意义所在。

反向过程是扩散模型的关键。反向过程本质上是通过从纯噪声图像中逐渐去除大量噪声来生成新图像来逆推正向过程。我们从纯噪声数据开始,对于每个时间步 t,我们减去理论上该时间步的前向过程添加的噪声量。我们不断消除噪音,直到最终得到类似于原始数据分布的东西。大部分工作是训练一个模型来仔细近似前向过程,以便估计可以生成新样本的反向过程。

算法和训练目标

前向过程算法实现

 为了训练这样的模型来估计反向扩散过程,需要遵循下面定义的图像中的算法:

  • 从训练数据集中随机采样数据点
  • 在噪声(方差)表上选择一个随机时间步长t
  • 将该时间步长t对应的噪声添加到数据中,通过“扩散内核”模拟前向扩散过程
  • 将加噪数据投入到模型中,模型预测出此时添加的噪声
  • 计算预测噪声和实际噪声之间的均方误差,并通过该目标函数优化模型参数
  • 重复

从数学上讲,算法中的确切公式一开始可能看起来有点奇怪,如果没有看到完整的推导,但直观上它是基于噪声调度的 alpha 值的扩散内核的重新参数化,它只是计算了预测噪声和添加到图像中的实际噪声的平方差。

如果我们的模型可以根据前向过程的特定时间步成功预测噪声,我们可以迭代地从时间步 T 处的噪声开始,并根据每个时间步逐渐消除噪声,直到恢复类似于生成样本的数据x_{0},使其符合原始数据分布。

采样算法(逆向过程)实现

1. 从标准正态分布生成随机噪声
对于从最后一个时间步开始并向后移动的每个时间步:

2. 通过估计逆向过程分布来更新 Z,其中平均值由上一步中的 Z 参数化,方差由我们的模型在该时间步估计的噪声参数化

3. 添加少量噪声以保持稳定性(解释如下)

4. 重复直到到达时间步 0,此时恢复最初的图像

采样和生成图像的算法在数学上可能看起来很复杂,但它直观地可以归结为一个迭代过程,我们从纯噪声开始,估计理论上在时间步 t 添加的噪声,然后将其减去。我们这样做直到得到生成的样本。应该注意的唯一小细节是在减去估计噪声后,我们添加少量噪声以保持过程稳定。例如,在迭代过程开始时一次性估计并减去噪声总量会导致生成样本非常不连贯,因此在实践中,经验表明,添加一点噪声并迭代每个时间步可以生成更好的数据样本。最后可以迭代得到时间步为1时的噪声数据z_{1},并且拿训练好的去噪模型预测噪声g_{1}[z_{1},\phi_{1}],将两者加权对减,得到最后的干净图像x_{0}

基本去噪模型框架-UNET

DDPM 论文的作者使用最初为医学图像分割设计的 UNET 架构来构建模型来预测扩散反向过程的噪声。这里使用的UNET模型适用于 32x32 图像,非常适合 MNIST 等数据集,但该模型可以缩放以处理更高分辨率的数据。 UNET 有很多变体,但这里将构建的模型架构的概述如下图所示。

 

 DDPM 的 UNET 与经典的 UNET 类似,因为它同时包含下采样流和上采样流,从而减轻了网络的计算负担,同时还具有两个流之间的跳跃连接,以合并来自浅层和浅层的信息。模型的深层特征。

DDPM UNET 和经典 UNET 之间的主要区别在于,DDPM UNET 的特点是关注 16x16 维层以及每个残差块中的正弦transformer嵌入。正弦transformer嵌入背后的含义是告诉模型我们尝试预测噪声的时间步长。这有助于模型通过加入噪声的时间位置的位置信息来预测每个时间步的噪声。例如,如果我们有一个噪声时间表,那么模型了解它需要预测噪声的加噪时间位置信息,可以帮助模型预测相应时间步长的噪声。对于那些还不熟悉 Transformer 架构的人来说,可以在这里找到有关注意力和嵌入的更多一般信息 :Attention is All You Need https://arxiv.org/abs/1706.03762

在模型的实现中,我们首先导入必要的库函数并编码我们的正弦函数完成对加噪时间步长的嵌入表示。直观上,正弦嵌入是不同的正弦和余弦频率,可以直接添加到我们的输入中,为模型提供额外的位置/顺序理解。从下图中可以看出,每个正弦波都是独一无二的,这将使模型了解其在噪声表中的位置。

 

# Imports
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange #pip install einops
from typing import List
import random
import math
from torchvision import datasets, transforms
from torch.utils.data import DataLoader 
from timm.utils import ModelEmaV3 #pip install timm 
from tqdm import tqdm #pip install tqdm
import matplotlib.pyplot as plt #pip install matplotlib
import torch.optim as optim
import numpy as np

class SinusoidalEmbeddings(nn.Module):
    def __init__(self, time_steps:int, embed_dim: int):
        super().__init__()
        position = torch.arange(time_steps).unsqueeze(1).float()
        div = torch.exp(torch.arange(0, embed_dim, 2).float() * -(math.log(10000.0) / embed_dim))
        embeddings = torch.zeros(time_steps, embed_dim, requires_grad=False)
        embeddings[:, 0::2] = torch.sin(position * div)
        embeddings[:, 1::2] = torch.cos(position * div)
        self.embeddings = embeddings

    def forward(self, x, t):
        embeds = self.embeddings[t].to(x.device)
        return embeds[:, :, None, None]

定义UNET残差层

# Residual Blocks
class ResBlock(nn.Module):
    def __init__(self, C: int, num_groups: int, dropout_prob: float):
        super().__init__()
        self.relu = nn.ReLU(inplace=True)
        self.gnorm1 = nn.GroupNorm(num_groups=num_groups, num_channels=C)
        self.gnorm2 = nn.GroupNorm(num_groups=num_groups, num_channels=C)
        self.conv1 = nn.Conv2d(C, C, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(C, C, kernel_size=3, padding=1)
        self.dropout = nn.Dropout(p=dropout_prob, inplace=True)

    def forward(self, x, embeddings):
        x = x + embeddings[:, :x.shape[1], :, :]
        r = self.conv1(self.relu(self.gnorm1(x)))
        r = self.dropout(r)
        r = self.conv2(self.relu(self.gnorm2(r)))
        return r + x

在 DDPM 中,作者在 UNET 的每层(分辨率比例)使用 2 个残差块,对于 16x16 维度层,这里在两个残差块之间引入了经典的 Transformer 注意机制。我们现在将为 UNET 实现注意力机制:

注意力机制

class Attention(nn.Module):
    def __init__(self, C: int, num_heads:int , dropout_prob: float):
        super().__init__()
        self.proj1 = nn.Linear(C, C*3)
        self.proj2 = nn.Linear(C, C)
        self.num_heads = num_heads
        self.dropout_prob = dropout_prob

    def forward(self, x):
        h, w = x.shape[2:]
        x = rearrange(x, 'b c h w -> b (h w) c')
        x = self.proj1(x)
        x = rearrange(x, 'b L (C H K) -> K b H L C', K=3, H=self.num_heads)
        q,k,v = x[0], x[1], x[2]
        x = F.scaled_dot_product_attention(q,k,v, is_causal=False, dropout_p=self.dropout_prob)
        x = rearrange(x, 'b H (h w) C -> b h w (C H)', h=h, w=w)
        x = self.proj2(x)
        return rearrange(x, 'b h w C -> b C h w')

注意力的实现是非常直接的。我们重塑数据,将 h*w 维度组合成“序列”维度,就像 Transformer 模型的经典输入一样,而通道维度变成嵌入特征维度。在此实现中,我们利用 torch.nn.function.scaled_dot_product_attention,因为该实现包含 flash 注意力,这是注意力的优化版本,在数学上仍然相当于经典的transformer注意力。有关 Flash Attention 的更多信息可以参考这些论文:

Flash Attention https://arxiv.org/abs/2205.14135

Flash Attention https://arxiv.org/abs/2205.14135

最后,到这里,我们就可以定义一个完整的UNET层了:

class UnetLayer(nn.Module):
    def __init__(self, 
            upscale: bool, 
            attention: bool, 
            num_groups: int, 
            dropout_prob: float,
            num_heads: int,
            C: int):
        super().__init__()
        self.ResBlock1 = ResBlock(C=C, num_groups=num_groups, dropout_prob=dropout_prob)
        self.ResBlock2 = ResBlock(C=C, num_groups=num_groups, dropout_prob=dropout_prob)
        if upscale:
            self.conv = nn.ConvTranspose2d(C, C//2, kernel_size=4, stride=2, padding=1)
        else:
            self.conv = nn.Conv2d(C, C*2, kernel_size=3, stride=2, padding=1)
        if attention:
            self.attention_layer = Attention(C, num_heads=num_heads, dropout_prob=dropout_prob)

    def forward(self, x, embeddings):
        x = self.ResBlock1(x, embeddings)
        if hasattr(self, 'attention_layer'):
            x = self.attention_layer(x)
        x = self.ResBlock2(x, embeddings)
        return self.conv(x), x

如前所述,DDPM 中的每一层都有 2 个残差块,并且可能包含一个注意力机制,并且我们另外将嵌入传递到每个残差块中。此外,我们返回下采样或上采样值以及我们将存储并用于残差串联跳跃连接的先前值。

UNET模型

class UNET(nn.Module):
    def __init__(self,
            Channels: List = [64, 128, 256, 512, 512, 384],
            Attentions: List = [False, True, False, False, False, True],
            Upscales: List = [False, False, False, True, True, True],
            num_groups: int = 32,
            dropout_prob: float = 0.1,
            num_heads: int = 8,
            input_channels: int = 1,
            output_channels: int = 1,
            time_steps: int = 1000):
        super().__init__()
        self.num_layers = len(Channels)
        self.shallow_conv = nn.Conv2d(input_channels, Channels[0], kernel_size=3, padding=1)
        out_channels = (Channels[-1]//2)+Channels[0]
        self.late_conv = nn.Conv2d(out_channels, out_channels//2, kernel_size=3, padding=1)
        self.output_conv = nn.Conv2d(out_channels//2, output_channels, kernel_size=1)
        self.relu = nn.ReLU(inplace=True)
        self.embeddings = SinusoidalEmbeddings(time_steps=time_steps, embed_dim=max(Channels))
        for i in range(self.num_layers):
            layer = UnetLayer(
                upscale=Upscales[i],
                attention=Attentions[i],
                num_groups=num_groups,
                dropout_prob=dropout_prob,
                C=Channels[i],
                num_heads=num_heads
            )
            setattr(self, f'Layer{i+1}', layer)

    def forward(self, x, t):
        x = self.shallow_conv(x)
        residuals = []
        for i in range(self.num_layers//2):
            layer = getattr(self, f'Layer{i+1}')
            embeddings = self.embeddings(x, t)
            x, r = layer(x, embeddings)
            residuals.append(r)
        for i in range(self.num_layers//2, self.num_layers):
            layer = getattr(self, f'Layer{i+1}')
            x = torch.concat((layer(x, embeddings)[0], residuals[self.num_layers-i-1]), dim=1)
        return self.output_conv(self.relu(self.late_conv(x)))

定义 noise scheduler 

class DDPM_Scheduler(nn.Module):
    def __init__(self, num_time_steps: int=1000):
        super().__init__()
        self.beta = torch.linspace(1e-4, 0.02, num_time_steps, requires_grad=False)
        alpha = 1 - self.beta
        self.alpha = torch.cumprod(alpha, dim=0).requires_grad_(False)

    def forward(self, t):
        return self.beta[t], self.alpha[t]

返回 beta(方差)值和 alpha 值,因为训练和采样的公式都基于它们的数学推导来使用。

def set_seed(seed: int = 42):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    np.random.seed(seed)
    random.seed(seed)

 另外定义一个训练种子。这意味着,如果想重现特定的训练实例,可以使用一组种子,这样每次使用相同的种子时,随机权重和优化器初始化都是相同的。

模型训练和图像生成

 使用MNIST数据来对模型进行训练。

def train(batch_size: int=64,
          num_time_steps: int=1000,
          num_epochs: int=15,
          seed: int=-1,
          ema_decay: float=0.9999,  
          lr=2e-5,
          checkpoint_path: str=None):
    set_seed(random.randint(0, 2**32-1)) if seed == -1 else set_seed(seed)

    train_dataset = datasets.MNIST(root='./data', train=True, download=False,transform=transforms.ToTensor())
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)

    scheduler = DDPM_Scheduler(num_time_steps=num_time_steps)
    model = UNET().cuda()
    optimizer = optim.Adam(model.parameters(), lr=lr)
    ema = ModelEmaV3(model, decay=ema_decay)
    if checkpoint_path is not None:
        checkpoint = torch.load(checkpoint_path)
        model.load_state_dict(checkpoint['weights'])
        ema.load_state_dict(checkpoint['ema'])
        optimizer.load_state_dict(checkpoint['optimizer'])
    criterion = nn.MSELoss(reduction='mean')

    for i in range(num_epochs):
        total_loss = 0
        for bidx, (x,_) in enumerate(tqdm(train_loader, desc=f"Epoch {i+1}/{num_epochs}")):
            x = x.cuda()
            x = F.pad(x, (2,2,2,2))
            t = torch.randint(0,num_time_steps,(batch_size,))
            e = torch.randn_like(x, requires_grad=False)
            a = scheduler.alpha[t].view(batch_size,1,1,1).cuda()
            x = (torch.sqrt(a)*x) + (torch.sqrt(1-a)*e)
            output = model(x, t)
            optimizer.zero_grad()
            loss = criterion(output, e)
            total_loss += loss.item()
            loss.backward()
            optimizer.step()
            ema.update(model)
        print(f'Epoch {i+1} | Loss {total_loss / (60000/batch_size):.5f}')

    checkpoint = {
        'weights': model.state_dict(),
        'optimizer': optimizer.state_dict(),
        'ema': ema.state_dict()
    }
    torch.save(checkpoint, 'checkpoints/ddpm_checkpoint')

 为了进行推理,直观上,我们只是逆转了前向过程。从纯噪声开始,现在训练的模型可以预测每个时间步的估计噪声,然后可以迭代生成全新的样本。噪声的每个不同起点,都可以生成不同的独特样本,该样本与原始数据分布相似但独特。本文并未推导出推论公式,但开头链接的参考文献可以帮助指导想要更深入理解的读者。

def display_reverse(images: List):
    fig, axes = plt.subplots(1, 10, figsize=(10,1))
    for i, ax in enumerate(axes.flat):
        x = images[i].squeeze(0)
        x = rearrange(x, 'c h w -> h w c')
        x = x.numpy()
        ax.imshow(x)
        ax.axis('off')
    plt.show()

def inference(checkpoint_path: str=None,
              num_time_steps: int=1000,
              ema_decay: float=0.9999, ):
    checkpoint = torch.load(checkpoint_path)
    model = UNET().cuda()
    model.load_state_dict(checkpoint['weights'])
    ema = ModelEmaV3(model, decay=ema_decay)
    ema.load_state_dict(checkpoint['ema'])
    scheduler = DDPM_Scheduler(num_time_steps=num_time_steps)
    times = [0,15,50,100,200,300,400,550,700,999]
    images = []

    with torch.no_grad():
        model = ema.module.eval()
        for i in range(10):
            z = torch.randn(1, 1, 32, 32)
            for t in reversed(range(1, num_time_steps)):
                t = [t]
                temp = (scheduler.beta[t]/( (torch.sqrt(1-scheduler.alpha[t]))*(torch.sqrt(1-scheduler.beta[t])) ))
                z = (1/(torch.sqrt(1-scheduler.beta[t])))*z - (temp*model(z.cuda(),t).cpu())
                if t[0] in times:
                    images.append(z)
                e = torch.randn(1, 1, 32, 32)
                z = z + (e*torch.sqrt(scheduler.beta[t]))
            temp = scheduler.beta[0]/( (torch.sqrt(1-scheduler.alpha[0]))*(torch.sqrt(1-scheduler.beta[0])) )
            x = (1/(torch.sqrt(1-scheduler.beta[0])))*z - (temp*model(z.cuda(),[0]).cpu())

            images.append(x)
            x = rearrange(x.squeeze(0), 'c h w -> h w c').detach()
            x = x.numpy()
            plt.imshow(x)
            plt.show()
            display_reverse(images)
            images = []

 

def main():
    train(checkpoint_path='checkpoints/ddpm_checkpoint', lr=2e-5, num_epochs=75)
    inference('checkpoints/ddpm_checkpoint')

if __name__ == '__main__':
    main()

使用上面列出的模型训练,进行 75 个 epoch 训练后,可以得到以下结果:

参考文献

  •  DDPM https://arxiv.org/abs/2006.11239
  • Attention is All You Need https://arxiv.org/abs/1706.03762
  •  Flash Attention 2 https://arxiv.org/abs/2307.08691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2180145.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp小程序原始tabbar添加红点以及信息的方法

如图所示 很多人不知道在uniapp 小程序原始的tabbar上添加红点和红点内的信息有官方的api 从而用自定义的tabbar来做 虽然两种方法都能实现效果,但明显使用自带的更方便 还不如自定义

集合论(ZFC)之 序数(Ordinals) 注解

两个同构(isomorphic)的良序集(Well-Ordered Set),拥有同样的序型(Order-Type),那么序数(Ordinal)就是指良序集的序型(Order-Type)。 …

React 生命周期 - useEffect 介绍

在 React 中,useEffect 钩子可以被看作是函数组件中的一种副作用管理工具,它的行为可以模拟类组件中的不同生命周期方法。useEffect 的执行时机取决于其依赖项数组(第二个参数)的设置方式。 根据 useEffect 的使用方式&#xff0c…

在校大学生想从事网络安全工程师,来听听过来人的经验,你会少走很多弯路_学会大学的专业课之后可以去网络安全嘛

大家好!一直以来都有一些大学生粉丝私信向我“取经”,看得出很多人对前路多多少少都有些迷茫。 因此,我将大家的问题整理了一下,主要有这几点: 1.国内网安工程师薪资水平? 2.网安行业真实前景?…

怎么提取视频里的音频?非常简单的提取音频方法

怎么提取视频里的音频?在现代数字媒体环境中,视频和音频的结合已成为信息传播和创作的重要手段。随着互联网的发展,视频内容日益丰富,从社交媒体短视频到在线课程,再到电影和纪录片,音频在这些内容中的角色…

全解析:如何评估PLM系统的性价比?

在当今竞争激烈的市场环境中,企业为了提升产品创新能力、优化生产流程、提高市场响应速度,纷纷引入PLM产品生命周期管理系统。然而,面对市场上琳琅满目的PLM系统,如何评估其性价比,成为企业决策的重要课题。本文将从多…

高清视频格式转换软件 豌豆狐 WonderFox HD Video Converter v27.7.0 中文授权版

WonderFox HD Video Converter Factory Pro 是一款来自国外团队开发的视频编辑和转换软件。它的强大之处在于支持数十种视频格式和设备专用格式之间的互相转换,甚至可以处理HD超清和4K极清视频!开启显卡加速后,转换速度飞快,效率超…

LeetCode讲解篇之3. 无重复字符的最长子串

文章目录 题目描述题解思路代码实现 题目描述 题解思路 因为我们需要求无重复字符的最长子串,这个我们首先需要想到使用滑动窗口,窗口内记录无重复的子串的所有字符,移动窗口的右边界时,发现当前字符在窗口内已经出现&#xff0c…

【LeetCode】动态规划—120. 三角形最小路径和(附完整Python/C++代码)

动态规划—120. 三角形最小路径和 前言题目描述基本思路1. 问题定义2. 理解问题和递推关系3. 解决方法3.1 动态规划方法3.2 空间优化的动态规划 4. 进一步优化5. 小总结 代码实现PythonPython代码实现Python 代码解释 CC代码实现C 代码解释 总结: 前言 三角形最小路径和 是动态…

CHI协议中的LPID

总目录: CHI协议简读汇总-CSDN博客https://blog.csdn.net/zhangshangjie1/article/details/131877216 当某个requester包含多个logically separate processing agent时,使用这个LPID; LPID在如下的opcode下,取值需要正确&#…

无人机在抗洪方面的作用!

一、实时监测与灾情评估 无人机能够迅速抵达受灾区域上空,通过搭载的高清摄像头、红外热成像仪等传感器,实时传输灾区图像和视频,为救援指挥中心提供第一手资料。有助于快速了解灾情,从而制定科学合理的救援方案。 二、搜救定位…

SpringMVC源码-AbstractHandlerMethodMapping处理器映射器将@Controller修饰类方法存储到处理器映射器

SpringMVC九大内置组件之HandlerMapping处理器映射器-AbstractHandlerMethodMapping类以及子类RequestMappingHandlerMapping如何将Controller修饰的注解类以及类下被注解RequestMapping修饰的方法存储到处理器映射器中。 从RequestMappingHandlerMapping寻找: AbstractHandle…

②三菱Modbus主站MELSEC转ModbusRTU/ASCII工业MELSEC网关串口服务

三菱Modbus主站MELSEC转ModbusRTU/ASCII工业MELSEC网关串口服务https://item.taobao.com/item.htm?ftt&id834634632647 MELSEC 通信单元 MELSEC 转 RS485 (接上一章) 动作指示灯 电源指示灯(PWR) 表示 MS-A1-80X1 通讯模块是否处于通电中。…

用ChatGPT工作提效,这些方法太实用了!

被任务和紧迫的截止日期压垮了吗?ChatGPT 是提升工作效率的关键武器。探索这篇指南,快速提升您的工作效率! ChatGPT 在现代职场中的角色 随着数字时代的到来,技术进步彻底改变了商业世界,自动化和效率已成为企业保持…

怎样才能设计出全面且详细的测试要点?

今天想跟大家分享一个案例,关于一个测试场景引发的测试要点思考。 废话不多说,上菜! 情况介绍 某天,开发同事提交了一个功能优化单,大概情况就是:为了节省内存使用,开启了一个配置&#xff0…

求解线性方程的方法步骤(含例题),附解线性方程计算器

大家好,这里是效率办公指南! 📐 在数学和工程问题中,线性方程是一类非常基础且常见的问题。无论是解决简单的一元一次方程,还是复杂的多元线性方程组,都有一定的方法和步骤可以遵循。今天,我们…

体育课评分系统小程序的设计

管理员账户功能包括:系统首页,个人中心,学生管理,点明册管理,体育教案管理,教学评分管理,学生心率管理,身体素质测评管理,教学比赛成绩管理 微信端账号功能包括&#xf…

Autosar CP系列:设计模式之仲裁模式和信号质量模式

本文讲解关于Autosar的另外两个设计模式:仲裁模式和信号质量模式,上篇花大量篇幅讲解了《传感器执行器模式》。 1.仲裁模式 为了解决多个不同提供者或请求者之间的仲裁问题,引入一个新的组件,这个组件的作用是管理所有来自不同请…

安防监控/智慧安防EasyCVR视频汇聚监控平台无法启动并报错“no space left on service”是什么原因?

视频汇聚/安防监控/智慧安防EasyCVR视频监控平台,作为一款智能视频监控综合管理平台,凭借其强大的视频融合汇聚能力和灵活的视频能力,在各行各业的应用中发挥着越来越重要的作用。平台可以引入AI智能分析能力,能够实现对视频中的特…

Spring Cloud面试题收集

Spring Cloud Spring cloud 是一系列框架的有序集合。它利用 spring boot 的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等,都可以用 spring boot 的开发风格做到一键启动和部署。…