TDSQL-C电商小助手,AI驱动的智能化数据洞察新纪元

news2025/1/21 12:15:07

前言:

在数字经济蓬勃发展的今天,电商行业作为数字化转型的先锋,正以前所未有的速度积累着海量数据。这些数据不仅是交易记录的简单堆砌,更是企业洞察市场趋势、优化运营策略、提升用户体验的宝贵财富。然而,如何从这些数据海洋中高效提取有价值的信息,并将其转化为可指导决策的洞见,成为了电商企业面临的一大挑战。在此背景下,TDSQL-C电商可视化分析小助手应运而生,它凭借强大的AI技术,为电商企业打造了一个智能化、高效化的数据分析平台。

一、数据时代的电商挑战与机遇

随着互联网技术的飞速发展,电商行业迎来了前所未有的繁荣。从商品推荐、库存管理到物流追踪,每一个环节都离不开数据的支持。然而,数据的爆炸式增长也带来了新的问题:如何快速准确地处理这些数据?如何从中挖掘出隐藏的商业价值?传统的数据分析方法已难以满足电商企业的需求,他们迫切需要一种能够自动化、智能化处理数据,并提供直观可视化报告的工具。

二、TDSQL-C:高性能分布式数据库的坚实后盾

TDSQL-C作为腾讯云自主研发的分布式数据库产品,以其高并发、高可用、高可扩展性等特点,在电商领域展现出了强大的竞争力。它支持水平扩展,能够轻松应对电商大促期间的海量数据访问需求;同时,其强大的分布式事务处理能力,保证了数据的一致性和完整性,为电商企业的业务连续性提供了有力保障。正是基于TDSQL-C的坚实后盾,电商可视化分析小助手得以在数据处理和存储方面游刃有余。

三、AI驱动的智能化分析引擎

3.1 自然语言处理(NLP)技术

电商可视化分析小助手内置了先进的NLP技术,能够自动解析用户输入的查询语句,理解其背后的意图和需求。无论是简单的数据查询,还是复杂的业务问题,用户只需通过自然语言描述,小助手便能迅速响应,生成相应的分析报告。这种交互方式极大地降低了数据分析的门槛,使得非专业人士也能轻松上手。

3.2 机器学习算法

为了进一步提升数据分析的准确性和效率,小助手还集成了多种机器学习算法。通过对历史数据的深度学习,小助手能够自动识别数据中的规律和趋势,预测未来的市场走势和用户需求。例如,在商品推荐方面,小助手可以利用协同过滤、内容基推荐等算法,为用户提供更加个性化的购物体验;在库存管理方面,小助手则可以通过预测分析,帮助电商企业合理安排库存,避免缺货或积压的情况发生。

3.3 深度学习技术

针对电商领域中的图像、视频等非结构化数据,小助手还引入了深度学习技术。通过构建卷积神经网络(CNN)、循环神经网络(RNN)等模型,小助手能够自动识别和分析商品图片、用户评论等信息,提取出其中的关键特征和情感倾向。这些分析结果不仅有助于提升商品推荐的精准度,还能为电商企业提供更加全面的用户画像和市场洞察。

四、可视化呈现:让数据说话

数据的价值在于其能够被有效利用。为了让电商企业能够直观、快速地理解数据分析结果,小助手提供了丰富的可视化呈现方式。无论是柱状图、折线图还是饼图,小助手都能根据数据的特性和用户的需求,自动生成相应的图表。同时,小助手还支持交互式操作,用户可以通过拖拽、缩放等方式,自由探索数据背后的故事。这种直观、生动的呈现方式,不仅提高了数据分析的效率,也增强了决策的科学性和准确性。

五、应用场景示例

5.1 实时销售监控

在电商大促期间,销售数据的变化瞬息万变。通过TDSQL-C电商可视化分析小助手,电商企业可以实时监控销售数据的变化趋势,了解各品类、各商品的销售情况。同时,小助手还能根据历史数据和当前趋势,预测未来的销售走势,帮助电商企业及时调整营销策略和库存计划。

5.2 用户行为分析

用户行为数据是电商企业了解用户需求、优化用户体验的重要依据。通过小助手的NLP和机器学习算法,电商企业可以深入分析用户的浏览、点击、购买等行为数据,构建用户画像和兴趣图谱。这些分析结果不仅有助于提升商品推荐的精准度,还能为电商企业提供更加个性化的服务体验。

5.3 供应链管理优化

供应链管理是电商企业运营中的关键环节。通过小助手的深度学习和预测分析功能,电商企业可以精准预测未来的市场需求和库存需求,合理安排生产计划、采购计划和物流计划。这不仅可以降低库存成本和提高库存周转率,还能提升供应链的响应速度和灵活性。

5.4应用实例

我们只需要一个配置文件和一个python代码就可以轻松搭建一个AI小助手,真的是手搓我们的AI与BI决策分析大模型。

配置config.yaml 文件

配置文件也很简单,我们只需要配置,对应mysql数据库的访问信息,及对应调用大模型llama3.1:8b即可。

database: 
  db_user: root
  db_password: root?6789334
  db_host: gz-cynosdbmysql-grp-81ngojf5.sql.tencentcdb.com
  db_port: 27308
  db_name: shop 

hai:
  model: llama3.1:8b
  base_url: http://42.194.141.148:6399

这里主要分为 database 配置 和 hai 的配置

  • database 的配置详解:
    • db_user: 数据库账号,默认为 root
    • db_password: 创建数据库时的密码
    • db_host: 数据库连接地址
    • db_port: 数据库公网端口
    • db_name 创建的数据库名称,如果按手册来默认是 shop
  • hai 配置详解:
    • model 使用的大模型
    • base_url 模型暴露的 api 地址,是公网 ip 和端口的组合,默认 llama端口是6399

应用开发

 一个简单text2sql2plotly.py文件即可完成应用开发

from langchain_community.utilities import SQLDatabase
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import yaml
import mysql.connector
from decimal import Decimal
import plotly.graph_objects as go
import plotly
import pkg_resources
import matplotlib

yaml_file_path = 'config.yaml'

with open(yaml_file_path, 'r') as file:
    config_data = yaml.safe_load(file)

#获取所有的已安装的pip包
def get_piplist(p):
    return [d.project_name for d in pkg_resources.working_set]


#获取llm用于提供AI交互
ollama = ChatOllama(model=config_data['hai']['model'],base_url=config_data['hai']['base_url'])

db_user = config_data['database']['db_user']
db_password = config_data['database']['db_password']
db_host = config_data['database']['db_host']
db_port= config_data['database']['db_port']
db_name = config_data['database']['db_name']
# 获得schema
def get_schema(db):
    
    schema = mysql_db.get_table_info()
    return schema
def getResult(content):
    global mysql_db
    # 数据库连接
    mysql_db = SQLDatabase.from_uri(f"mysql+mysqlconnector://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}")
    # 获得 数据库中表的信息
    #mysql_db_schema = mysql_db.get_table_info()
    #print(mysql_db_schema)
    template = """基于下面提供的数据库schema, 根据用户提供的要求编写sql查询语句,要求尽量使用最优sql,每次查询都是独立的问题,不要收到其他查询的干扰:
    {schema}
    Question: {question}
    只返回sql语句,不要任何其他多余的字符,例如markdown的格式字符等:
    如果有异常抛出不要显示出来
    """
    prompt = ChatPromptTemplate.from_template(template)
    text_2_sql_chain = (
                RunnablePassthrough.assign(schema=get_schema)
                | prompt
                | ollama
                | StrOutputParser()
        )
    
    # 执行langchain 获取操作的sql语句
    sql = text_2_sql_chain.invoke({"question": content})

    print(sql)
    #连接数据库进行数据的获取
    # 配置连接信息
    conn = mysql.connector.connect(
    
        host=db_host,
        port=db_port,
        user=db_user,
        password=db_password,
        database=db_name
    )
    # 创建游标对象
    cursor = conn.cursor()
    # 查询数据
    cursor.execute(sql.strip("```").strip("```sql"))
    info = cursor.fetchall()
    # 打印结果
    #for row in info:
        #print(row)
    # 关闭游标和数据库连接
    cursor.close()
    conn.close()
    #根据数据生成对应的图表
    print(info)
    template2 = """
    以下提供当前python环境已经安装的pip包集合:
    {installed_packages};
    请根据data提供的信息,生成是一个适合展示数据的plotly的图表的可执行代码,要求如下:
        1.不要导入没有安装的pip包代码
        2.如果存在多个数据类别,尽量使用柱状图,循环生成时图表中对不同数据请使用不同颜色区分,
        3.图表要生成图片格式,保存在当前文件夹下即可,名称固定为:图表.png,
        4.我需要您生成的代码是没有 Markdown 标记的,纯粹的编程语言代码。
        5.生成的代码请注意将所有依赖包提前导入, 
        6.不要使用iplot等需要特定环境的代码
        7.请注意数据之间是否可以转换,使用正确的代码
        8.不需要生成注释
    data:{data}

    这是查询的sql语句与文本:

    sql:{sql}
    question:{question}
    返回数据要求:
    仅仅返回python代码,不要有额外的字符
    """
    prompt2 = ChatPromptTemplate.from_template(template2)
    data_2_code_chain = (
                RunnablePassthrough.assign(installed_packages=get_piplist)
                | prompt2
                | ollama
                | StrOutputParser()
        )
    
    # 执行langchain 获取操作的sql语句
    code = data_2_code_chain.invoke({"data": info,"sql":sql,'question':content})
    
    #删除数据两端可能存在的markdown格式
    print(code.strip("```").strip("```python"))
    exec(code.strip("```").strip("```python"))
    return {"code":code,"SQL":sql,"Query":info}


# 构建展示页面
import streamlit
# 设置页面标题
streamlit.title('AI驱动的数据库TDSQL-C 电商可视化分析小助手')
# 设置对话框
content = streamlit.text_area('请输入想查询的信息', value='', max_chars=None)
# 提问按钮 # 设置点击操作
if streamlit.button('提问'):
    #开始ai及langchain操作
    if content:
        #进行结果获取
        result = getResult(content)
        #显示操作结果
        streamlit.write('AI生成的SQL语句:')
        streamlit.write(result['SQL'])
        streamlit.write('SQL语句的查询结果:')
        streamlit.write(result['Query'])
        streamlit.write('plotly图表代码:')
        streamlit.write(result['code'])
        # 显示图表内容(生成在getResult中)
    streamlit.image('./图表.png', width=800) 

效果查看 

 

        如上图所示,我们只需要通过对话式的提问,即可完成对应BI决策分析,大大降低了应用门槛,提高了应用体验感呀~ 

六、结语:AI驱动的未来展望

随着AI技术的不断发展和普及,电商行业的数据分析能力将得到进一步提升。TDSQL-C电商可视化分析小助手作为AI驱动的智能化数据分析工具,将在电商领域发挥越来越重要的作用。它不仅能够帮助电商企业更好地理解和利用数据资源,提升业务决策的科学性和准确性;还能够推动电商行业的数字化转型和智能化升级,为电商企业创造更大的商业价值和社会价值。未来,我们期待TDSQL-C电商可视化分析小助手能够不断创新和完善,为电商行业的繁荣发展贡献更多的智慧和力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2175436.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【2024.9.28练习】青蛙的约会

题目描述 题目分析 由于两只青蛙都在跳跃导致变量多,不妨采用物理题中的相对运动思想,设青蛙A不动,青蛙B每次跳米,两只青蛙的距离为米。正常来说,只要模拟青蛙B与青蛙A的相对运动过程,最终当青蛙B与青蛙A距…

Goweb---Gorm操作Mysql数据库(一)

本文重点: db.AutoMigrate()这个函数的理解: AutoMigrate是GORM提供的一个方法,用于自动迁移你的模型(即数据库表结构)到数据库中,确保数据库表与你的Go结构体(模型)保持一致。 首先…

第十四届蓝桥杯真题Python c组D.平均(持续更新)

博客主页:音符犹如代码系列专栏:蓝桥杯关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 【问题描述】 有一个长度为n的数组(n是10的倍数),每个数 …

vscode配置Eslint后保存出现大量波浪线

解决问题:配置代码格式化 快捷键打开设置:ctrlshiftP 输入: format code 选择:

MySQL-数据库约束

1.约束类型 类型说明NOT NULL非空约束 指定非空约束的列不能存储NULL值 DEFAULT默认约束当没有给列赋值时使用的默认值UNIQUE唯一约束指定唯一约束的列每行数据必须有唯一的值PRIMARY KEY主键约束NOT NULL和UNIQUE的结合,可以指定一个列霍多个列,有助于…

qt6 使用QPSQL

qt6 自带pg数据库驱动: pro文件加个说明: 引用位置添加(按需添加,这里我就大致加一下): test code: 理想情况当然是要用pool,这里只是演示调用而已 QSqlError DbTool::testConnection(const QString &…

LSTM预测未来30天销售额

加入深度实战社区:www.zzgcz.com,免费学习所有深度学习实战项目。 1. 项目简介 本项目旨在利用深度学习中的长短期记忆网络(LSTM)来预测未来30天的销售额。LSTM模型能够处理时序数据中的长期依赖问题,因此在销售额预测这类涉及时…

19款奔驰E300升级新款触摸屏人机交互系统

《19 款奔驰 E300 的科技焕新之旅》 在汽车科技日新月异的时代,19 款奔驰 E300 的车主们为了追求更卓越的驾驶体验,纷纷选择对爱车进行升级改装,其中新款触摸屏人机交互系统的改装成为了热门之选。 19 款奔驰 E300 作为一款经典车型&#x…

Vue和axios零基础学习

Vue的配置与项目创建 在这之前要先安装nodejs 安装脚手架 官网 Home | Vue CLI (vuejs.org) 先运行,切换成淘宝镜像源,安装速度更快 npm config set registry http://registry.npm.taobao.org 创建项目 用编译器打开一个空文件,在终端输入…

DMA的原理

一、介绍 DMA(Direct Memory Access)是一种允许设备直接与内存进行数据交换的技术,无需‌CPU干预。DMA的主要功能是提供在‌外设和存储器之间或者存储器和存储器之间的高速数据传输。比如使用ADC进行数据采集,可以直接将数据存入…

【STM32】江科大STM32笔记汇总(已完结)

STM32江科大笔记汇总 STM32学习笔记课程简介(01)STM32简介(02)软件安装(03)新建工程(04)GPIO输出(05)LED闪烁& LED流水灯& 蜂鸣器(06)GPIO输入(07)按键控制LED 光敏传感器控制蜂鸣器(08)OLED调试工具(09)OLED显示屏(10)EXTI外部中断(11)对射式红外传感器计次 旋转编码器…

GAMES101(21~22节,动画和仿真)

Animation 关键帧 动画和几何(曲线)相关 物理模拟/仿真 牛顿第二定律:F ma 需要清楚网格间相互作用力,也需要把物理仿真和渲染分为两部来看,例如布料模拟,流体模拟 mass spring system质点弹簧系统 …

Nest.js实现一个简单的聊天室

本文将介绍如何使用 Nest.js 和 Uni-app 实现一个简单的实时聊天应用。后端使用 nestjs/websockets 和 socket.io,前端使用 uni-app 并集成 socket.io-client。这个项目允许多个用户同时加入聊天并实时交换消息。 效果图: 一、准备工作 安装 Node.js 和…

数据结构与算法——Java实现 24.中缀表达式转后缀

目录 中缀表达式转后缀表达式 引言 思路 代码 正因为我有能力跨越,考验才会降临 —— 24.9.28 中缀表达式转后缀表达式 引言 Java中的编译器会将我们编写代码中的中缀表达式转化为后缀表达式,然后编译好输出程序 思路 遍历中缀表达式,如果遇…

电脑学习通看不到课程解决办法

电脑学习通看不到课程解决办法 查看学习通时发现没有课程 解决方法1: 更改单位 具体见:超星学习通关于PC版无法查看课程问题解决 解决方法二:添加应用 添加应用 点击账号管理 点击应用管理 添加应用、添加首页这个应用 添加完成后查看首页就能看到课程了 然后就OK啦、就可…

[JavaEE] HTTP/HTTPS

目录 一、HTTP 1.1 HTTP是什么 1.2 HTTP发展史 1.3 HTTP工作过程 1.3.1 抓包工具的原理 1.4 HTTP请求格式 1.4.1认识URL 1.5 HTTP响应格式 1.6 认识HTTP"方法"(method) 1.6.1 GET方法 1.6.2 POST方法 1.6.3 其他方法 1.7 GET 与 POST 的区别 1.8 认识…

Centos安装docker(linux安装docker)——超详细小白可操作手把手教程,包好用!!!

🧸本篇博客重在讲解Centos安装docker,经博主多次在不同服务器上测试,极其的稳定,尤其是阿里的服务器,一路复制命令畅通无阻 📜后续会退出ububtu安装docker教程,敬请期待 📜作者首页&…

某客户Oracle RAC无法启动故障快速解决

某日,9:50左右接到好友协助需求,某个客户Oracle RAC无法启动,并发过来一个报错截图,如下: 和客户维护人员对接后,远程登录服务端进行故障分析。 查看hosts信息,首先进行心跳测试,测…

Java爬虫:获取SKU详细信息的艺术

在电子商务的世界里,SKU(Stock Keeping Unit,库存单位)是每个商品的唯一标识符,它包含了商品的详细信息,如尺寸、颜色、价格等。对于商家和开发者来说,获取商品的SKU详细信息对于库存管理、订单…

Spring Boot 整合 Keycloak

1、概览 本文将带你了解如何设置 Keycloak 服务器,以及如何使用 Spring Security OAuth2.0 将 Spring Boot 应用连接到 Keycloak 服务器。 2、Keycloak 是什么? Keycloak 是针对现代应用和服务的开源身份和访问管理解决方案。 Keycloak 提供了诸如单…