AI 驱动的数据库 TDSQL-C 实战与电商可视分析

news2024/12/23 9:21:18

目录

  • 一、背景介绍
  • 二、实验介绍
  • 三、效果展示
  • 四、实操指导
    • 4.1 系统设计
    • 4.2 环境搭建
      • 4.2.1 购买 TDSQL-C Mysql Serverless 实例
      • 4.2.2 部署HAI高算力服务器
      • 本地python环境搭建
    • 4.3 应用构建
      • 4.3.1 搭建项目框架
      • 4.3.2 TDSQL-C 数据库&HAI云算力配置
      • 4.3.3 应用开发
      • 4.3.4 运行程序并测试效果
    • 4.4 效果展示
  • 五、清理资源
    • 5.1 删除TDSQL-C Serverless
    • 5.2 删除 HAI 算力
  • 六、实验小结

一、背景介绍

AI 技术的应用极大地提升了运营效率,并为电商行业带来了个性化推荐、用户行为分析、库存管理和市场趋势预测等关键领域的数据分析能力,在这种背景下,构建一个高效、可靠的AI电商数据分析系统显得尤为关键。

本手册旨在详细指导开发者如何利用腾讯云的高性能应用服务 HAI 和TDSQL-C MySQL Serverless 版构建 AI电商数据分析系统。HAI作为一个面向AI和科学计算的GPU应用服务产品,提供了强大的计算能力,使得复杂AI模型如LLM的快速部署和运行成为可能,进而支持自然语言处理和图像生成等高级任务。与此同时,TDSQL-C MySQL版作为一款云原生关系型数据库,其100%的MySQL兼容性,以及极致的弹性、高性能和高可用性,使其成为电商业务中处理海量数据存储和查询的理想选择。

本手册将通过 Python 编程语言和基于 Langchain 的框架,逐步引导开发者完成系统的构建和部署。

二、实验介绍

本次实验我将基于 TDSQL-C Mysql Serverless 快速搭建 AI电商数据分析系统,实现思路如下:

  • 程序流程图设计
  • TDSQL-C Mysql Serverless 搭建
  • HAI llama 大模型部署
  • 开发环境搭建
  • AI电商数据分析系统构建

三、效果展示

(实拍)
在这里插入图片描述

四、实操指导

4.1 系统设计

程序流程图
在这里插入图片描述

4.2 环境搭建

4.2.1 购买 TDSQL-C Mysql Serverless 实例

  1. 访问腾讯云官网申请 TDSQL-C Mysql 服务器 点击链接
    在这里插入图片描述
  2. 根据图表选择选定服务器
    ** 选定的服务器为 serverless 的服务器**
    在这里插入图片描述
  3. 设置数据库密码和配置信息
    在这里插入图片描述
  4. 点击购买即可

在这里插入图片描述5. 前往数据库管理界面
在这里插入图片描述

  1. 管理页面中选择指定区域的 TDSQL-C Mysql 服务器
    在这里插入图片描述
  2. 开启实例公网访问

在这里插入图片描述
在这里插入图片描述
8. 登录在线管理工具

在这里插入图片描述
在这里插入图片描述
9. 新建数据库 shop
在这里插入图片描述
在这里插入图片描述
加粗样式
10. 导入数据表

CREATE TABLE `ecommerce_sales_stats` (
  `category_id` int NOT NULL COMMENT '分类ID(主键)',
  `category_name` varchar(100) NOT NULL COMMENT '分类名称',
  `total_sales` decimal(15,2) NOT NULL COMMENT '总销售额',
  `steam_sales` decimal(15,2) NOT NULL COMMENT 'Steam平台销售额',
  `offline_sales` decimal(15,2) NOT NULL COMMENT '线下实体销售额',
  `official_online_sales` decimal(15,2) NOT NULL COMMENT '官方在线销售额',
  PRIMARY KEY (`category_id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8mb4 AUTO_INCREMENT=1 COMMENT='电商分类销售统计表';
INSERT INTO `ecommerce_sales_stats` VALUES (1,'电子产品',150000.00,80000.00,30000.00,40000.00),(2,'服装',120000.00,20000.00,60000.00,40000.00),(3,'家居用品',90000.00,10000.00,50000.00,30000.00),(4,'玩具',60000.00,5000.00,30000.00,25000.00),(5,'书籍',45000.00,2000.00,20000.00,23000.00),(6,'运动器材',70000.00,15000.00,25000.00,30000.00),(7,'美容护肤',80000.00,10000.00,30000.00,40000.00),(8,'食品',50000.00,5000.00,25000.00,20000.00),(9,'珠宝首饰',30000.00,2000.00,10000.00,18000.00),(10,'汽车配件',40000.00,10000.00,15000.00,25000.00),(11,'手机配件',75000.00,30000.00,20000.00,25000.00),(12,'电脑配件',85000.00,50000.00,15000.00,20000.00),(13,'摄影器材',50000.00,20000.00,15000.00,15000.00),(14,'家电',120000.00,60000.00,30000.00,30000.00),(15,'宠物用品',30000.00,3000.00,12000.00,16800.00),(16,'母婴用品',70000.00,10000.00,30000.00,30000.00),(17,'旅行用品',40000.00,5000.00,15000.00,20000.00),(18,'艺术品',25000.00,1000.00,10000.00,14000.00),(19,'健康产品',60000.00,8000.00,25000.00,27000.00),(20,'办公用品',55000.00,2000.00,20000.00,33000.00);
CREATE TABLE `users` (
  `user_id` int NOT NULL AUTO_INCREMENT COMMENT '用户ID(主键,自增)',
  `full_name` varchar(100) NOT NULL COMMENT '用户全名',
  `username` varchar(50) NOT NULL COMMENT '用户名',
  `email` varchar(100) NOT NULL COMMENT '用户邮箱',
  `password_hash` varchar(255) NOT NULL COMMENT '用户密码的哈希值',
  `created_at` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `updated_at` datetime DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  `is_active` tinyint(1) DEFAULT '1' COMMENT '是否激活',
  PRIMARY KEY (`user_id`),
  UNIQUE KEY `email` (`email`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4  COMMENT='用户表';
INSERT INTO `users` VALUES (1,'张伟','zhangwei','zhangwei@example.com','hashed_password_1','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(2,'李娜','lina','lina@example.com','hashed_password_2','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(3,'王芳','wangfang','wangfang@example.com','hashed_password_3','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(4,'刘洋','liuyang','liuyang@example.com','hashed_password_4','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(5,'陈杰','chenjie','chenjie@example.com','hashed_password_5','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(6,'杨静','yangjing','yangjing@example.com','hashed_password_6','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(7,'赵强','zhaoqiang','zhaoqiang@example.com','hashed_password_7','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(8,'黄丽','huangli','huangli@example.com','hashed_password_8','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(9,'周杰','zhoujie','zhoujie@example.com','hashed_password_9','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(10,'吴敏','wumin','wumin@example.com','hashed_password_10','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(11,'郑伟','zhengwei','zhengwei@example.com','hashed_password_11','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(12,'冯婷','fengting','fengting@example.com','hashed_password_12','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(13,'蔡明','caiming','caiming@example.com','hashed_password_13','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(14,'潘雪','panxue','panxue@example.com','hashed_password_14','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(15,'蒋磊','jianglei','jianglei@example.com','hashed_password_15','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(16,'陆佳','lujia','lujia@example.com','hashed_password_16','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(17,'邓超','dengchao','dengchao@example.com','hashed_password_17','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(18,'任丽','renli','renli@example.com','hashed_password_18','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(19,'彭涛','pengtao','pengtao@example.com','hashed_password_19','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(20,'方圆','fangyuan','fangyuan@example.com','hashed_password_20','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(21,'段飞','duanfei','duanfei@example.com','hashed_password_21','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(22,'雷鸣','leiming','leiming@example.com','hashed_password_22','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(23,'贾玲','jialing','jialing@example.com','hashed_password_23','2024-08-18 04:07:18','2024-08-18 04:07:18',1);
CREATE TABLE `orders` (
  `order_id` int NOT NULL AUTO_INCREMENT,
  `user_id` int DEFAULT NULL,
  `order_amount` decimal(10,2) DEFAULT NULL,
  `order_status` varchar(20) DEFAULT NULL,
  `order_time` datetime DEFAULT NULL,
  PRIMARY KEY (`order_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 ;
INSERT INTO `orders` VALUES (1,3,150.50,'已支付','2024-08-23 10:01:00'),(2,7,89.20,'待支付','2024-08-23 10:03:15'),(3,12,230.00,'已支付','2024-08-23 10:05:30'),(4,2,99.90,'已发货','2024-08-23 10:07:45'),(5,15,120.00,'待发货','2024-08-23 10:10:00'),(6,21,180.50,'已支付','2024-08-23 10:12:15'),(7,4,105.80,'待支付','2024-08-23 10:14:30'),(8,18,210.00,'已支付','2024-08-23 10:16:45'),(9,6,135.20,'已发货','2024-08-23 10:19:00'),(10,10,160.00,'待发货','2024-08-23 10:21:15'),(11,1,110.50,'已支付','2024-08-23 10:23:30'),(12,22,170.80,'待支付','2024-08-23 10:25:45'),(13,8,145.20,'已发货','2024-08-23 10:28:00'),(14,16,190.00,'待发货','2024-08-23 10:30:15'),(15,11,125.50,'已支付','2024-08-23 10:32:30'),(16,19,165.20,'待支付','2024-08-23 10:34:45'),(17,5,130.00,'已发货','2024-08-23 10:37:00'),(18,20,175.80,'待发货','2024-08-23 10:39:15'),(19,13,140.50,'已支付','2024-08-23 10:41:30'),(20,14,155.20,'待支付','2024-08-23 10:43:45'),(21,9,135.50,'已发货','2024-08-23 10:46:00'),(22,23,185.80,'待发货','2024-08-23 10:48:15'),(23,17,160.50,'已支付','2024-08-23 10:50:30'),(24,12,145.20,'待支付','2024-08-23 10:52:45'),(25,3,130.00,'已发货','2024-08-23 10:55:00'),(26,8,115.50,'已支付','2024-08-23 10:57:15'),(27,19,120.20,'待支付','2024-08-23 10:59:30'),(28,6,145.50,'已发货','2024-08-23 11:01:45'),(29,14,130.20,'待支付','2024-08-23 11:04:00'),(30,5,125.50,'已支付','2024-08-23 11:06:15'),(31,21,135.20,'待支付','2024-08-23 11:08:30'),(32,7,140.50,'已发货','2024-08-23 11:10:45'),(33,16,120.20,'待支付','2024-08-23 11:13:00'),(34,10,135.50,'已支付','2024-08-23 11:15:15'),(35,2,140.20,'待支付','2024-08-23 11:17:30'),(36,12,145.20,'待支付','2024-08-23 12:00:00'),(37,15,130.20,'已支付','2024-08-23 12:02:15'),(38,20,125.50,'待发货','2024-08-23 12:04:30'),(39,17,135.20,'已支付','2024-08-23 12:06:45'),(40,4,140.50,'待支付','2024-08-23 12:09:00'),(41,10,120.20,'已发货','2024-08-23 12:11:15'),(42,13,135.50,'已支付','2024-08-23 12:13:30'),(43,18,145.20,'待支付','2024-08-23 12:15:45'),(44,6,130.20,'已发货','2024-08-23 12:18:00'),(45,11,125.50,'已支付','2024-08-23 12:20:15'),(46,19,135.20,'待支付','2024-08-23 12:22:30'),(47,5,140.50,'已发货','2024-08-23 12:24:45'),(48,20,120.20,'待支付','2024-08-23 12:27:00'),(49,17,135.50,'已支付','2024-08-23 12:29:15'),(50,4,145.20,'待支付','2024-08-23 12:31:30'),(51,10,130.20,'已发货','2024-08-23 12:33:45'),(52,13,125.50,'已支付','2024-08-23 12:36:00'),(53,18,135.20,'待支付','2024-08-23 12:38:15'),(54,6,140.50,'已发货','2024-08-23 12:40:30'),(55,11,120.20,'待支付','2024-08-23 12:42:45'),(56,19,135.50,'已支付','2024-08-23 12:45:00'),(57,5,145.20,'待支付','2024-08-23 12:47:15'),(58,20,130.20,'已发货','2024-08-23 12:49:30'),(59,17,125.50,'已支付','2024-08-23 13:01:45'),(60,4,135.20,'待支付','2024-08-23 13:04:00'),(61,10,140.50,'已发货','2024-08-23 13:06:15'),(62,13,120.20,'待支付','2024-08-23 13:08:30'),(63,18,135.50,'已支付','2024-08-23 13:10:45'),(64,6,145.20,'待支付','2024-08-23 13:13:00'),(65,11,130.20,'已发货','2024-08-23 13:15:15'),(66,19,125.50,'已支付','2024-08-23 13:17:30'),(67,5,135.20,'待支付','2024-08-23 13:19:45'),(68,20,140.50,'已发货','2024-08-23 13:22:00'),(69,17,120.20,'待支付','2024-08-23 13:24:15'),(70,4,135.50,'已支付','2024-08-23 13:26:30'),(71,10,145.20,'待支付','2024-08-23 13:28:45'),(72,13,130.20,'已发货','2024-08-23 13:31:00'),(73,18,125.50,'已支付','2024-08-23 13:33:15'),(74,6,135.20,'待支付','2024-08-23 13:35:30'),(75,11,140.50,'已发货','2024-08-23 13:37:45'),(76,19,120.20,'待支付','2024-08-23 13:40:00'),(77,5,135.50,'已支付','2024-08-23 13:42:15'),(78,20,145.20,'待支付','2024-08-23 13:44:30'),(79,17,130.20,'已发货','2024-08-23 13:46:45'),(80,4,125.50,'已支付','2024-08-23 13:49:00'),(81,10,135.20,'待支付','2024-08-23 13:51:15'),(82,13,140.50,'已发货','2024-08-23 13:53:30'),(83,18,120.20,'待支付','2024-08-23 13:55:45'),(84,6,135.50,'已支付','2024-08-23 13:58:00'),(85,11,145.20,'待支付','2024-08-23 14:00:15'),(86,19,130.20,'已发货','2024-08-23 14:02:30'),(87,5,125.50,'已支付','2024-08-23 14:04:45'),(88,20,135.20,'待支付','2024-08-23 14:07:00'),(89,17,140.50,'已发货','2024-08-23 14:09:15'),(90,4,120.20,'待支付','2024-08-23 14:11:30'),(91,10,135.50,'已支付','2024-08-23 14:13:45'),(92,13,145.20,'待支付','2024-08-23 14:16:00'),(93,18,130.20,'已发货','2024-08-23 14:18:15'),(94,6,125.50,'已支付','2024-08-23 14:20:30'),(95,11,135.20,'待支付','2024-08-23 14:22:45'),(96,19,140.50,'已发货','2024-08-23 14:25:00'),(97,5,120.20,'待支付','2024-08-23 14:27:15'),(98,20,135.50,'已支付','2024-08-23 14:29:30'),(99,17,145.20,'待支付','2024-08-23 14:31:45'),(100,4,130.20,'已发货','2024-08-23 14:34:00'),(101,10,125.50,'已支付','2024-08-23 14:36:15'),(102,13,135.20,'待支付','2024-08-23 14:38:30'),(103,18,140.50,'已发货','2024-08-23 14:40:45'),(104,16,120.20,'待支付','2024-08-23 14:43:00'),(105,12,135.50,'已支付','2024-08-23 14:45:15'),(106,3,145.20,'待支付','2024-08-23 14:47:30'),(107,8,130.20,'已发货','2024-08-23 14:49:45'),(108,19,125.50,'已支付','2024-08-23 14:52:00'),(109,6,135.20,'待支付','2024-08-23 14:54:15'),(110,14,140.50,'已发货','2024-08-23 14:56:30'),(111,10,120.20,'待支付','2024-08-23 14:58:45'),(112,13,135.50,'已支付','2024-08-23 15:01:00'),(113,18,145.20,'待支付','2024-08-23 15:03:15'),(114,6,130.20,'已发货','2024-08-23 15:05:30'),(115,11,125.50,'已支付','2024-08-23 15:07:45'),(116,19,135.20,'待支付','2024-08-23 15:10:00'),(117,5,140.50,'已发货','2024-08-23 15:12:15'),(118,20,120.20,'待支付','2024-08-23 15:14:30'),(119,17,135.50,'已支付','2024-08-23 15:16:45'),(120,4,145.20,'待支付','2024-08-23 15:19:00'),(121,10,130.20,'已发货','2024-08-23 15:21:15'),(122,13,125.50,'已支付','2024-08-23 15:23:30'),(123,18,135.20,'待支付','2024-08-23 15:25:45'),(124,6,140.50,'已发货','2024-08-23 15:28:00'),(125,11,120.20,'待支付','2024-08-23 15:30:15'),(126,19,135.50,'已支付','2024-08-23 15:32:30'),(127,5,145.20,'待支付','2024-08-23 15:34:45'),(128,20,130.20,'已发货','2024-08-23 15:37:00'),(129,17,125.50,'已支付','2024-08-23 15:39:15'),(130,4,135.20,'待支付','2024-08-23 15:41:30'),(131,10,140.50,'已发货','2024-08-23 15:43:45'),(132,13,120.20,'待支付','2024-08-23 15:46:00'),(133,18,135.50,'已支付','2024-08-23 15:48:15'),(134,6,145.20,'待支付','2024-08-23 15:50:30'),(135,11,130.20,'已发货','2024-08-23 15:52:45'),(136,19,125.50,'已支付','2024-08-23 15:55:00'),(137,5,135.20,'待支付','2024-08-23 15:57:15'),(138,20,140.50,'已发货','2024-08-23 15:59:30'),(139,17,120.20,'待支付','2024-08-23 16:01:45'),(140,4,135.50,'已支付','2024-08-23 16:04:00'),(141,10,145.20,'待支付','2024-08-23 16:06:15'),(142,13,130.20,'已发货','2024-08-23 16:08:30'),(143,18,125.50,'已支付','2024-08-23 16:10:45'),(144,6,135.20,'待支付','2024-08-23 16:13:00'),(145,11,140.50,'已发货','2024-08-23 16:15:15'),(146,19,120.20,'待支付','2024-08-23 16:17:30'),(147,5,135.50,'已支付','2024-08-23 16:19:45'),(148,20,145.20,'待支付','2024-08-23 16:22:00'),(149,17,130.20,'已发货','2024-08-23 16:24:15'),(150,4,125.50,'已支付','2024-08-23 16:26:30'),(151,10,135.20,'待支付','2024-08-23 16:28:45'),(152,13,140.50,'已发货','2024-08-23 16:31:00'),(153,18,120.20,'待支付','2024-08-23 16:33:15'),(154,6,135.50,'已支付','2024-08-23 16:35:30'),(155,11,145.20,'待支付','2024-08-23 16:37:45'),(156,19,130.20,'已发货','2024-08-23 16:40:00'),(157,5,125.50,'已支付','2024-08-23 16:42:15'),(158,20,135.20,'待支付','2024-08-23 16:44:30'),(159,17,140.50,'已发货','2024-08-23 16:46:45'),(160,4,120.20,'待支付','2024-08-23 16:49:00'),(161,10,135.50,'已支付','2024-08-23 16:51:15'),(162,13,145.20,'待支付','2024-08-23 16:53:30'),(163,18,130.20,'已发货','2024-08-23 16:55:45'),(164,6,125.50,'已支付','2024-08-23 16:58:00'),(165,11,135.20,'待支付','2024-08-23 17:00:15'),(166,19,140.50,'已发货','2024-08-23 17:02:30'),(167,5,120.20,'待支付','2024-08-23 17:04:45'),(168,20,135.50,'已支付','2024-08-23 17:07:00'),(169,17,145.20,'待支付','2024-08-23 17:09:15'),(170,4,130.20,'已发货','2024-08-23 17:11:30'),(171,10,125.50,'已支付','2024-08-23 17:13:45'),(172,13,135.20,'待支付','2024-08-23 17:16:00'),(173,18,140.50,'已发货','2024-08-23 17:18:15'),(174,6,120.20,'待支付','2024-08-23 17:20:30'),(175,11,135.50,'已支付','2024-08-23 17:22:45'),(176,19,145.20,'待支付','2024-08-23 17:25:00'),(177,5,130.20,'已发货','2024-08-23 17:27:15'),(178,20,125.50,'已支付','2024-08-23 17:29:30'),(179,17,135.20,'待支付','2024-08-23 17:31:45'),(180,4,140.50,'已发货','2024-08-23 17:34:00'),(181,10,120.20,'待支付','2024-08-23 17:36:15'),(182,13,135.50,'已支付','2024-08-23 17:38:30'),(183,18,145.20,'待支付','2024-08-23 17:40:45'),(184,6,130.20,'已发货','2024-08-23 17:43:00'),(185,11,125.50,'已支付','2024-08-23 17:45:15'),(186,19,135.20,'待支付','2024-08-23 17:47:30'),(187,5,140.50,'已发货','2024-08-23 17:49:45'),(188,20,120.20,'待支付','2024-08-23 17:52:00'),(189,17,135.50,'已支付','2024-08-23 17:54:15'),(190,4,145.20,'待支付','2024-08-23 17:56:30'),(191,10,130.20,'已发货','2024-08-23 17:58:45'),(192,13,125.50,'已支付','2024-08-23 18:01:00'),(193,18,135.20,'待支付','2024-08-23 18:03:15'),(194,6,140.50,'已发货','2024-08-23 18:05:30'),(195,11,120.20,'待支付','2024-08-23 18:07:45'),(196,19,135.50,'已支付','2024-08-23 18:10:00'),(197,5,145.20,'待支付','2024-08-23 18:12:15'),(198,20,130.20,'已发货','2024-08-23 18:14:30'),(199,17,125.50,'已支付','2024-08-23 18:16:45'),(200,4,135.20,'待支付','2024-08-23 18:19:00'),(201,10,140.50,'已发货','2024-08-23 18:21:15'),(202,13,120.20,'待支付','2024-08-23 18:23:30'),(203,18,135.50,'已支付','2024-08-23 18:25:45'),(204,6,145.20,'待支付','2024-08-23 18:28:00'),(205,11,130.20,'已发货','2024-08-23 18:30:15'),(206,19,125.50,'已支付','2024-08-23 18:32:30'),(207,5,135.20,'待支付','2024-08-23 18:34:45'),(208,20,140.50,'已发货','2024-08-23 18:37:00'),(209,17,120.20,'待支付','2024-08-23 18:39:15'),(210,4,135.50,'已支付','2024-08-23 18:41:30'),(211,10,145.20,'待支付','2024-08-23 18:43:45');

将以上SQL复制到SQL执行窗口,确保当前数据库选中 shop
在这里插入图片描述
在这里插入图片描述
TDSQL-C Mysql Serverless 数据库服务器准备完毕!

4.2.2 部署HAI高算力服务器

  1. 访问腾讯云 HAI 官网 官网地址:
  2. 点击立即使用在这里插入图片描述
  3. 点击新建按钮,新建服务器(费用会在新建服务器并使用后才开始计费)在这里插入图片描述
  4. 根据配置需求选择算力服务器在这里插入图片描述
  5. 查看HAI算力服务器的llama对外端口在这里插入图片描述检查是否已经默认开放 6399端口,如下状态即是开放在这里插入图片描述如未开放点击新建配置进行协议配置在这里插入图片描述入站规则来源选择 all,协议输入 tcp:6399在这里插入图片描述llama 大模型服务准备完毕!

本地python环境搭建

  1. 访问python官网,并下载符合自己服务器的python版本(推荐3.10.11)

下载地址

在这里插入图片描述

  1. 双击安装包安装python,window版本需要勾选add python to PATH在这里插入图片描述
  2. 使用pip安装程序使用的依赖包文件
    右键点击开始图标,选择运行,输入cmd,回车后打开终端

在这里插入图片描述
运行pip命令安装依赖包,请分别运行以下pip命令逐个安装

pip install openai 
pip install langchain 
pip install langchain-core 
pip install langchain-community 
pip install mysql-connector-python 
pip install streamlit 
pip install plotly 
pip install numpy
pip install pandas
pip install watchdog
pip install matplotlib
pip install kaleido

4.3 应用构建

4.3.1 搭建项目框架

  1. 新建名为 workspace 文件夹进行保存项目代码
  2. 在项目文件夹(workspace)中新建配置文件 config.yaml
  3. 在项目文件夹(workspace)中新建应用主文件 text2sql2plotly.py
    在这里插入图片描述

4.3.2 TDSQL-C 数据库&HAI云算力配置

打开 config.yaml 文件,复制以下内容到配置文件中:

database: 
  db_user: root
  db_password: tencent_TDSQL
  db_host: sh-cynosdbmysql-grp-9d8prc9o.sql.tencentcdb.com
  db_port: 21919
  db_name: shop

hai:
  model: llama3.1:8b
  base_url: http://82.156.229.112:6399

这里主要分为 database 配置 和 hai 的配置

database 的配置详解:
db_user: 数据库账号,默认为 root
db_password: 创建数据库时的密码
db_host: 数据库连接地址
db_port: 数据库公网端口
db_name 创建的数据库名称,如果按手册来默认是 shop
hai 配置详解:
model 使用的大模型
base_url 模型暴露的 api 地址,是公网 ip 和端口的组合,默认 llama端口是6399
database 中填入 TDSQL-C 的相关配置,db_host、db_port可以在集群列表中找到

在这里插入图片描述

hai base_url将实例的ip进行替换,ip可以在HAI的控制台-> 算力管理中找到

在这里插入图片描述

4.3.3 应用开发

将以下程序代码复制并保存到 text2sql2plotly.py 文件中

from langchain_community.utilities import SQLDatabase
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import yaml
import mysql.connector
from decimal import Decimal
import plotly.graph_objects as go
import plotly
import pkg_resources
import matplotlib

yaml_file_path = 'config.yaml'

with open(yaml_file_path, 'r') as file:
    config_data = yaml.safe_load(file)

#获取所有的已安装的pip包
def get_piplist(p):
    return [d.project_name for d in pkg_resources.working_set]


#获取llm用于提供AI交互
ollama = ChatOllama(model=config_data['hai']['model'],base_url=config_data['hai']['base_url'])

db_user = config_data['database']['db_user']
db_password = config_data['database']['db_password']
db_host = config_data['database']['db_host']
db_port= config_data['database']['db_port']
db_name = config_data['database']['db_name']
# 获得schema
def get_schema(db):
    
    schema = mysql_db.get_table_info()
    return schema
def getResult(content):
    global mysql_db
    # 数据库连接
    mysql_db = SQLDatabase.from_uri(f"mysql+mysqlconnector://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}")
    # 获得 数据库中表的信息
    #mysql_db_schema = mysql_db.get_table_info()
    #print(mysql_db_schema)
    template = """基于下面提供的数据库schema, 根据用户提供的要求编写sql查询语句,要求尽量使用最优sql,每次查询都是独立的问题,不要收到其他查询的干扰:
    {schema}
    Question: {question}
    只返回sql语句,不要任何其他多余的字符,例如markdown的格式字符等:
    如果有异常抛出不要显示出来
    """
    prompt = ChatPromptTemplate.from_template(template)
    text_2_sql_chain = (
                RunnablePassthrough.assign(schema=get_schema)
                | prompt
                | ollama
                | StrOutputParser()
        )
    
    # 执行langchain 获取操作的sql语句
    sql = text_2_sql_chain.invoke({"question": content})

    print(sql)
    #连接数据库进行数据的获取
    # 配置连接信息
    conn = mysql.connector.connect(
    
        host=db_host,
        port=db_port,
        user=db_user,
        password=db_password,
        database=db_name
    )
    # 创建游标对象
    cursor = conn.cursor()
    # 查询数据
    cursor.execute(sql.strip("```").strip("```sql"))
    info = cursor.fetchall()
    # 打印结果
    #for row in info:
        #print(row)
    # 关闭游标和数据库连接
    cursor.close()
    conn.close()
    #根据数据生成对应的图表
    print(info)
    template2 = """
    以下提供当前python环境已经安装的pip包集合:
    {installed_packages};
    请根据data提供的信息,生成是一个适合展示数据的plotly的图表的可执行代码,要求如下:
        1.不要导入没有安装的pip包代码
        2.如果存在多个数据类别,尽量使用柱状图,循环生成时图表中对不同数据请使用不同颜色区分,
        3.图表要生成图片格式,保存在当前文件夹下即可,名称固定为:图表.png,
        4.我需要您生成的代码是没有 Markdown 标记的,纯粹的编程语言代码。
        5.生成的代码请注意将所有依赖包提前导入, 
        6.不要使用iplot等需要特定环境的代码
        7.请注意数据之间是否可以转换,使用正确的代码
        8.不需要生成注释
    data:{data}

    这是查询的sql语句与文本:

    sql:{sql}
    question:{question}
    返回数据要求:
    仅仅返回python代码,不要有额外的字符
    """
    prompt2 = ChatPromptTemplate.from_template(template2)
    data_2_code_chain = (
                RunnablePassthrough.assign(installed_packages=get_piplist)
                | prompt2
                | ollama
                | StrOutputParser()
        )
    
    # 执行langchain 获取操作的sql语句
    code = data_2_code_chain.invoke({"data": info,"sql":sql,'question':content})
    
    #删除数据两端可能存在的markdown格式
    print(code.strip("```").strip("```python"))
    exec(code.strip("```").strip("```python"))
    return {"code":code,"SQL":sql,"Query":info}


# 构建展示页面
import streamlit
# 设置页面标题
streamlit.title('AI驱动的数据库TDSQL-C 电商可视化分析小助手')
# 设置对话框
content = streamlit.text_area('请输入想查询的信息', value='', max_chars=None)
# 提问按钮 # 设置点击操作
if streamlit.button('提问'):
    #开始ai及langchain操作
    if content:
        #进行结果获取
        result = getResult(content)
        #显示操作结果
        streamlit.write('AI生成的SQL语句:')
        streamlit.write(result['SQL'])
        streamlit.write('SQL语句的查询结果:')
        streamlit.write(result['Query'])
        streamlit.write('plotly图表代码:')
        streamlit.write(result['code'])
        # 显示图表内容(生成在getResult中)
    streamlit.image('./图表.png', width=800) 

4.3.4 运行程序并测试效果

打开终端执行以下命令
在这里插入图片描述
在这里插入图片描述

4.4 效果展示

输入:查询一下每类商品的名称和对应的销售总额 测试效果
在这里插入图片描述
推荐的几个查询操作:

友情提示:目前不可能做到每次查询都完全没问题,这个取决于多方面的因素:

例如:大语言模型(llm)的模型大小、查询描述的准确性(歧义等沟通问题)等

查询每个用户账号的名称和长度
查询一下每类商品的名称和对应的销售总额
查询出用户赵强的已支付订单的总额和未支付订单的总额数据

五、清理资源

5.1 删除TDSQL-C Serverless

点击退还实例,退还后实例会在回收站中
在这里插入图片描述在这里插入图片描述

点击回收站即可看到已被退还的实例,为了数据安全,实例默认会在回收站中保留3天,如不需要可以进行立即释放
在这里插入图片描述

5.2 删除 HAI 算力

在这里插入图片描述

六、实验小结

在本次实验中,我们成功地利用了腾讯云的 TDSQL-C MySQL Serverless 和高性能应用服务HAI,构建了一个高效、可扩展的AI电商数据分析系统。以下是实验的关键成果和学习点:

云原生数据库的优势:通过使用TDSQL-C MySQL Serverless,我们体验了云原生数据库在处理大规模数据时的弹性和高性能,这对于电商数据分析尤为重要。

GPU加速的AI模型:HAI提供的GPU加速能力显著提升了AI模型的训练和推理速度,使得系统能够快速响应市场变化和用户需求。

实战演练的价值:通过具体的案例研究,开发者不仅理解了理论知识,还通过实际操作加深了对系统功能的认识。

持续学习与改进:实验的总结也指出了系统可能存在的局限性和改进空间,鼓励开发者持续学习最新的技术和方法,以不断优化和升级系统。

随着技术的不断进步,我们期待在未来的实验中探索更多的创新可能性,最后也欢迎大家一起来探索 TDSQL-C Serverless + AI 更多的场景,为产业赋能!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2167981.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

将本地文件上传至虚拟机

1、查看虚拟机ip地址 ip addr 2、xshell连接上虚拟机 连接root连接不上的解决办法更改配置文件vim /etc/ssh/sshd_config 重启(sudo service ssh restart)并查看是否开启ssh服务(sudo ps -e | grep ssh) 即可连接成功 3、复制文…

深度学习500问——Chapter15:异构计算,GPU和框架选型(2)

文章目录 15.5 GPU硬件环境配置推荐 15.5.1 GPU主要性能指标 15.5.2 购买建议 15.6 软件环境搭建 15.6.1 操作系统选择 15.6.2 常用基础软件安装 15.5 GPU硬件环境配置推荐 15.5.1 GPU主要性能指标 GPU的性能主要由以下三个参数构成: 计算能力。通常我们关心的是…

Python酷库之旅-第三方库Pandas(127)

目录 一、用法精讲 566、pandas.DataFrame.swapaxes方法 566-1、语法 566-2、参数 566-3、功能 566-4、返回值 566-5、说明 566-6、用法 566-6-1、数据准备 566-6-2、代码示例 566-6-3、结果输出 567、pandas.DataFrame.melt方法 567-1、语法 567-2、参数 567-3…

sheng的学习笔记-AI-蒙特卡罗强化学习

AI目录:sheng的学习笔记-AI目录-CSDN博客 强化学习:sheng的学习笔记-AI-强化学习(Reinforcement Learning, RL)-CSDN博客 K-摇臂赌博机(K-armed bandit):https://blog.csdn.net/coldstarry/ar…

【AAOS】CarService -- Android汽车服务

概述 Android Automative OS理解为Android OS + Android Automative Service,而CarService就是提供汽车相关功能的最主要模块。 CarService与Android OS的关系:CarService运行于独立的进程中,其作为原有Android服务的补充,在汽车设备上运行。CarService在整体车载通信中起…

海南聚广众达电子商务咨询有限公司可靠不?

在这个短视频与直播电商风起云涌的时代,海南聚广众达电子商务咨询有限公司以其专业的服务能力和敏锐的市场洞察力,在抖音电商领域脱颖而出,成为了众多商家信赖的合作伙伴。今天,就让我们一同走进海南聚广众达,探索它是…

LLM - 使用 vLLM 部署 Qwen2-VL 多模态大语言模型 (配置 FlashAttention) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/142528967 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 vLLM 用…

VS Code使用Git Bash终端

Git Bash可以运行linux命令,在VS Code的终端界面,找到号旁边的箭头,就能直接切换了 当然,前提是安装了Git Bash,并且在资源管理器里,能鼠标右键出"Git Bash Here"

【个人笔记】线程和线程池的状态以及转换方式

线程和线程池的状态是不一样的!! 线程有 6 种状态,查看Thread的State枚举类: NEW:创建后没启动的线程就处于这种状态RUNNABLE:正在java虚拟机中执行的线程就处于这种状态BLOCKED:受阻塞并等待…

前端中CSS选择器权重的问题

前言 前端中很重要的CSS,使得网页更加丰满美丽,我们使用CSS时,必不可少的需要使用选择器,选择器也分为简单选择器和复合选择器。而在给选择器中填充内容时,有时候会有一些命令重复,会涉及到优先级的问题&a…

setInterval 实现匀速运动示例【JavaScript】

这段代码利用 setInterval 实现了一个简单的动画&#xff0c;当用户点击按钮时&#xff0c;页面上的方块会向右移动&#xff0c;直到到达一定的边界为止。 实现效果&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html lang"zh"><head><met…

Java搭建法律AI助手,快速实现RAG应用

使用AI4J快速接入RAG应用 | 结合Pinecone实现法律AI助手RAG应用 本博文给大家介绍一下如何使用AI4J快速接入OpenAI大模型&#xff0c;并且结合Pinecone向量数据库实现一个刑法AI助手的RAG应用。 介绍 由于SpringAI需要使用JDK17和Spring Boot3&#xff0c;但是目前很多应用依…

初识 C 语言(一)

目录 一、 第一个 C 程序1. printf() 函数和 stdio.h 头文件2. main() 函数和 return 语句 二、类型和变量1. C 语言中的基本类型2. 变量的创建和命名规则3. 类型和变量的大小 三、printf() 函数和 scanf() 函数1. printf() 函数的使用2. 各种类型的输出格式3. scanf() 函数的使…

屏幕翻译下载哪个?建议试试这5个

国庆假期快到了&#xff0c;计划出国游或享受宅家追更海外剧的你&#xff0c;是否担心语言不通带来的小困扰&#xff1f; 别急&#xff0c;下面这篇文章就为你揭秘5款屏幕翻译免费软件&#xff0c;无论是浏览外国网站、阅读外语文档还是跨越语言障碍&#xff0c;都毫无压力。 …

YOLOv8-pose+streamlit 实现人体关键点检测/姿态估计系统(后续可用于健身时的姿态估计,训练纠正等....)

人体关键点检测系统 一、安装与配置1.1 安装 Streamlit1.2 配置文件1.3 运行Streamlit应用1.4 找模板 二、人体关键点检测算法2.1 关键点序号2.2 YOLOv8-pose图像推理 三、将YOLOv8-pose算法内置到streamlit中3.1 整体结构3.2 常见问题- RGB通道颠倒- Numpy与OpenCV之间的转换 …

java-必会jdk1.8新特性

1:抽象类的变化 前言&#xff1a; 接口里只能做方法定义不能有方法的实现&#xff0c;抽象类的方法不需要继承类必须去实现的一种方式。 定义一个抽象类TestAbstractclass 如下 package com.lm.jdk8.Abstractclass;/*** 抽象类*/ public abstract class Abstractclass {abstrac…

通信工程学习:什么是PNF物理网络功能

PNF:物理网络功能 PNF(Physical Network Function)即物理网络功能,是指支持网络功能的物理设备。以下是关于PNF的详细解释: 一、定义与特点 定义: PNF是网络设备厂商(如Cisco、华为、H3C等)通过专用硬件实体提供软件功能的设备。这些设备直接在物理服务器上运…

java:异常处理

背景 Java中的异常体系基于几个关键的概念和类&#xff0c;主要包括Throwable类、Exception类&#xff08;及其子类&#xff09;和Error类。 异常分类 1. Throwable 类 Throwable 是所有错误与异常的超类。它有两个直接子类&#xff1a;Error 和 Exception。 2. Error 类 …

【OpenAI o1思维链CoT必看论文】谷歌“思维链提示“让AI更懂人类推理

原创 超 超的闲思世界 AI的推理能力正迎来一场重大突破。谷歌大脑团队最新开发的"思维链提示"方法&#xff0c;让大型语言模型在复杂推理任务上展现出惊人的进步。这项创新技术无需对模型进行额外训练&#xff0c;却能显著提升AI的推理能力&#xff0c;让机器的思…

python命令行怎么换行

在命令行中“>>>”是python的输入提示符&#xff0c;按回车键则表示输入结束。那么如何在命令行中换行呢&#xff1f; 换行方法&#xff1a;\ 如&#xff1a; >>> print aaa; \ ... print bbb; \ ... print ccc 注意“&#xff1b;”的使用。python本身语句…