线性代数(持续更新)

news2024/11/25 8:23:06

一.矩阵及其计算

1.矩阵的概念

矩阵就是一个数表

元素全是0,是零矩阵,用0来表示

当m=n时,称为n阶矩阵(方阵)

只有一行的叫行矩阵,只有一列的叫列矩阵

只有对角线有元素的叫做对角矩阵,用diag(a11,a22,.... ann) 表示

对角元全是1的对角矩阵叫单位矩阵

对角元全是k的对角矩阵叫数量矩阵

上三角矩阵

下三角矩阵

线性方程组与矩阵的对应关系:

2.矩阵的线性运算

同型矩阵:两个矩阵的行数和列数分别相等

矩阵相等:同型矩阵对应元素相等

矩阵加法:同型矩阵对应元素相加

负矩阵:对应元素相反

矩阵减法:对应元素相减

数乘:矩阵的每个值都×这个数

3.矩阵乘法

矩阵A有多少列,矩阵B要有多少行

性质:矩阵乘法不可交换
          AB=0,不能推出A=0或B=0(因此,AB=AC,推不出B = C)

任何矩阵和单位矩阵的乘法是可以交换的 IA = A = AI

4.矩阵乘法的运算规律

(AB)C = A(BC)                k(AB) = kAB = A(kB)        A(B+C) = AB + AC

(B+C)A = BA + CA

例题:证明(AB)C = A(BC) 

首先证明同型,然后证明相等

5.方阵的幂与多项式

若A是n阶方阵,k是正整数

注意:

只有在AB = BA的情况下,才会成立

有f(A)= g(A),但是一般f(A)g(B) ≠ g(B)f(A)

6.矩阵的转置

A转置的转置等于A

转置的相加等于相加的转置

7.对称矩阵和反对称矩阵

如果A的转置等于A本身,A就是对称矩阵

A的转置等于-A,A就是反对称矩阵(反对称矩阵的对角元是0)

数乘对称矩阵仍为对称矩阵,同阶对称矩阵和仍为对称矩阵

只有在AB = BA时,同阶对称矩阵的乘积才是对称矩阵

如果A与A转置的乘积为0,则A=0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2164015.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FTP被动模式配置

FTP被动模式配置 非云服务器或未开启防火墙的服务器不需要设置 背景: 某些FTP客户端与FTP服务器进行数据交互时,客户端数据传输使用的是被动模式; 被动模式会导致服务端的数据通道端口随机变动,服务器的防火墙无法设置放行规则…

Excel数据检视——对角线连续数据连线

实例需求:数据表如下图所示,现需要根据规则,在符合要求的单元格上,添加连线。 连续单元格位于对角线方向单元格内容相同连续单元格数量不少于7个 示例代码如下。 Sub LT2RB()Dim objDic As Object, rngData As Range, bFlag As …

基于springBoot校园健康驿站管理平台(源码+教程)

互联网发展至今,无论是其理论还是技术都已经成熟,而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播,搭配信息管理工具可以很好地为人们提供服务。针对信息管理混乱,出错率高,信息安全性差,劳…

开源标注工具

DoTAT https://github.com/FXLP/MarkTool 后端代码未开放,可能有数据泄露风险 Chinese-Annotator https://github.com/deepwel/Chinese-Annotator 安装非常麻烦,github更新频率比较低,支持功能和doccano类似 IEPY https://github.com/ma…

头戴式蓝牙无线耳机哪个牌子比较好?头戴式蓝牙耳机排行榜盘点

在当今快节奏的生活中,音乐已成为我们不可或缺的精神食粮,而一款优秀的头戴式蓝牙无线耳机,不仅能为我们带来高品质的音频享受,还能让我们在繁忙的生活中找到片刻的宁静与放松,那么头戴式蓝牙无线耳机哪个牌子比较好&a…

【工具变量】数字技术应用广度与深度数据集(2001-2023年)

数据简介:数字技术应用广度是指企业为了实现收集、存储与处理海量数据时所需要的技术支撑,诸如大数据、云计算、区块链等等。数字技术应用深度包括数字化管理和数字化生产。其中,数字化管理是指企业应用数字技术实现组织、生产、销售和服务智…

Unreal Engine 5 C++: Asset Batch Duplication插件编写02

目录 准备工作 "Scripting library" 三个最重要的功能(前两个是UEditorUtilityLibrary中的) 自动创建声明: TArray T 的含义 F 的含义 Live Coding (Ctrlalt F11) Live Coding 的工作流程&#xff…

uni-app - - - - - 实现锚点定位和滚动监听功能(滚动监听功能暂未添加,待后续更新)

实现锚点定位和滚动监听功能 1. 思路解析2. 代码示例 效果截图示例: 点击左侧menu,右侧列表数据实现锚点定位 1. 思路解析 点击左侧按钮,更新右侧scroll-view对应的scroll-into-view的值,即可实现右侧锚点定位滚动右侧区域&am…

攻防世界--->robots

学习笔记。 robots: 得,就是隐藏某些东西呗。 - - 好吧,还是不会。 参考: 攻防世界——新手区——robots_robots flag-CSDN博客https://blog.csdn.net/weixin_45864041/article/details/108036234 突破点: so&#…

u-navber自定义导航栏搜索框

效果 代码 <template><view><u-navbar :is-back"false"><view class"navbar"><view class"search"><image src"../../static/my_device/search_icon.png" class"search_image"></i…

代码随想录算法day40 | 动态规划算法part13 | 647. 回文子串,516.最长回文子序列

647. 回文子串 动态规划解决的经典题目&#xff0c;如果没接触过的话&#xff0c;别硬想 直接看题解。 力扣题目链接(opens new window) 给定一个字符串&#xff0c;你的任务是计算这个字符串中有多少个回文子串。 具有不同开始位置或结束位置的子串&#xff0c;即使是由相同的…

箱包发霉怎么清洁霉斑 工厂箱包发霉翻箱处理方法

箱包是我们日常生活中的必备品&#xff0c;随着箱包工厂订单不断&#xff0c;但工厂最头疼的就是会经常遇到批量的箱包出现发霉的问题。一旦发霉&#xff0c;并要面临一笔巨额索赔问题&#xff0c;尤其出口到国外发霉了&#xff0c;经ihaoer防霉人士介绍一种简单有效的方法&…

apple developer 开发者账号被停用,提示Locked,终于解决了

事情是这样的&#xff0c;9.11我们要发布app的时候&#xff0c;一直登录不上。然后联系了苹果客服&#xff0c;告知账号不活跃。于是让我们通过活跃申请、以及重置密码申请操作来解决。 然后&#xff0c;操作一遍又一遍&#xff0c;都解决不了。 后来联系可国外的客服&#…

新能源行业的福音,复合机器人助力打造智能无人化充电站

随着工业自动化和智能化水平的不断提升&#xff0c;无人化作业已成为现代生产线的必然趋势。在山西地区的室内生产条件下&#xff0c;富唯智能凭借其在自卸车充电系统领域的深厚积累&#xff0c;成功设计出一套高效、稳定的自卸车自动充电系统&#xff0c;为工业领域带来革命性…

ssm协同办公系统-计算机毕业设计源码42133

摘要 随着信息技术的迅猛发展&#xff0c;协同办公系统在企业和组织中扮演着越来越重要的角色。本研究旨在基于SSM框架、Java编程语言和MySQL数据库&#xff0c;设计和开发一个协同办公系统。首先&#xff0c;介绍了协同办公系统的背景和意义&#xff0c;详细阐述了系统的功能模…

Git - 版本管理

本文我们来介绍下 Git 管理版本的几个常用命令。 ‍ git log&#xff1a;查看提交日志 随着对文件的不断修改与提交&#xff0c;Git 帮我们管理了之前的各个版本。就好比玩一个能存档的游戏&#xff0c;每过一关就能帮我们存档&#xff0c;如果某一关没打过&#xff0c;就可…

告别繁琐!用 Light To Freedomen一键打造你的专属后台管理系统

作为开发者&#xff0c;特别是后端开发人员&#xff0c;前端开发工作往往是一项让人头疼的挑战。复杂的UI设计&#xff0c;数据展示和交互逻辑&#xff0c;不仅费时费力&#xff0c;还容易出现各种问题。然而&#xff0c;后台管理系统作为企业应用的核心模块&#xff0c;又是无…

uboot以tag结构体的方式给内核传参,cmdline,bootargs,以及uboot如何启动内核

uboot以tag结构体的方式给内核传参&#xff0c;cmdline&#xff0c;bootargs&#xff0c;以及uboot如何启动内核 一、u-boot启动流程 1、第一阶段 cpu/s3c24xx/start.S 主要是一些依赖于 CPU 体系结构的代码,比如硬件设备初始化代码 等。这一阶段的代码主要是通过汇编来实现…

3. 轴指令(omron 机器自动化控制器)——>MC_MoveRelative

机器自动化控制器——第三章 轴指令 5 MC_MoveRelative变量▶输入变量▶输出变量▶输入输出变量 功能说明▶指令详情▶时序图▶重启运动指令▶多重启动运动指令▶异常 MC_MoveRelative 指定自指令当前位置起的移动距离&#xff0c;进行定位。 指令名称FB/FUN图形表现ST表现MC…

如何查看线程

1、首先找到我们的电脑安装jdk的位置&#xff0c;这里给大家展示一下博主本人的电脑jdk路径下的jconsole位置。 2、 ok&#xff0c;那么找到这个jconsole程序我们直接双击打开就可以查看我们电脑的本地进程&#xff1a; jconsole 这里能够罗列出你系统上的 java 进程&#xff0…