【计算机视觉】YoloV8-训练与测试教程

news2024/11/9 9:39:03


Blog’s 主页: 白乐天_ξ( ✿>◡❛)
🌈 个人Motto:他强任他强,清风拂山冈!
💫 欢迎来到我的学习笔记!

制作数据集

Labelme 数据集

  • 数据集选用自己标注的,可参考以下:
['c17', 'c5', 'helicopter', 'c130', 'f16', 'b2',
'other', 'b52', 'kc10', 'command', 'f15', 'kc135', 'a10',
'b1', 'aew', 'f22', 'p3', 'p8', 'f35', 'f18', 'v22', 'f4',
'globalhawk', 'u2', 'su-27', 'il-38', 'tu-134', 'su-33',
'an-70', 'su-24', 'tu-22', 'il-76']

格式转换

  • 将 Labelme 数据集转为 yolov8 格式的数据集,转换代码如下:
import os
import shutil

import numpy as np
import json
from glob import glob
import cv2
from sklearn.model_selection import train_test_split
from os import getcwd


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def change_2_yolo5(files, txt_Name):
    imag_name = []
    for json_file_ in files:
        json_filename = labelme_path + json_file_ + ".json"
        out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w')
        json_file = json.load(open(json_filename, "r", encoding="utf-8"))
        # image_path = labelme_path + json_file['imagePath']
        imag_name.append(json_file_ + '.jpg')
        height, width, channels = cv2.imread(labelme_path + json_file_ + ".jpg").shape
        for multi in json_file["shapes"]:
            points = np.array(multi["points"])
            xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0
            xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0
            ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0
            ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0
            label = multi["label"].lower()
            if xmax <= xmin:
                pass
            elif ymax <= ymin:
                pass
            else:
                cls_id = classes.index(label)
                b = (float(xmin), float(xmax), float(ymin), float(ymax))
                bb = convert((width, height), b)
                out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
                # print(json_filename, xmin, ymin, xmax, ymax, cls_id)
    return imag_name


def image_txt_copy(files, scr_path, dst_img_path, dst_txt_path):
    """
    :param files: 图片名字组成的list
    :param scr_path: 图片的路径
    :param dst_img_path: 图片复制到的路径
    :param dst_txt_path: 图片对应的txt复制到的路径
    :return:
    """
    for file in files:
        img_path = scr_path + file
        print(file)
        shutil.copy(img_path, dst_img_path + file)
        scr_txt_path = scr_path + file.split('.')[0] + '.txt'
        shutil.copy(scr_txt_path, dst_txt_path + file.split('.')[0] + '.txt')


if __name__ == '__main__':
    classes = ['c17', 'c5', 'helicopter', 'c130', 'f16', 'b2',
               'other', 'b52', 'kc10', 'command', 'f15', 'kc135', 'a10',
               'b1', 'aew', 'f22', 'p3', 'p8', 'f35', 'f18', 'v22', 'f4',
               'globalhawk', 'u2', 'su-27', 'il-38', 'tu-134', 'su-33',
               'an-70', 'su-24', 'tu-22', 'il-76']

    # 1.标签路径
    labelme_path = "USA-Labelme/"
    isUseTest = True  # 是否创建test集
    # 3.获取待处理文件
    files = glob(labelme_path + "*.json")

    files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
    for i in files:
        print(i)
    trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55)
    # split
    train_files, val_files = train_test_split(trainval_files, test_size=0.1, random_state=55)
    train_name_list = change_2_yolo5(train_files, "train")
    print(train_name_list)
    val_name_list = change_2_yolo5(val_files, "val")
    test_name_list = change_2_yolo5(test_files, "test")
    # 创建数据集文件夹。
    file_List = ["train", "val", "test"]
    for file in file_List:
        if not os.path.exists('./VOC/images/%s' % file):
            os.makedirs('./VOC/images/%s' % file)
        if not os.path.exists('./VOC/labels/%s' % file):
            os.makedirs('./VOC/labels/%s' % file)
    image_txt_copy(train_name_list, labelme_path, './VOC/images/train/', './VOC/labels/train/')
    image_txt_copy(val_name_list, labelme_path, './VOC/images/val/', './VOC/labels/val/')
    image_txt_copy(test_name_list, labelme_path, './VOC/images/test/', './VOC/labels/test/')
  • 运行完成后就得到了yolov8格式的数据集。

本地调试

  1. 下载与安装
    ● Github: GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite
    ● 也可以直接使用命令行:pip install
    ● 下载到本地后解压,将生成的yolo数据集放到datasets(需要创建datasets 文件夹)文件夹下面,如下图:

  1. 安装库文件
  • 安装必要的库文件,安装命令:
    • pip install opencv-python
    • pip install numpy==1.23.5
    • pip install pyyaml
    • pip install tqdm
    • pip install matplotlib
  • 注意numpy的版本,如果是 2.0 以上版本一定要把版本降下来。
  1. 创建配置文件
  • 在根目录新建 VOC.yaml 文件,添加内容:
train:./VOC/images/train # train images
val:./VOC/images/val # val images
test:./VOC/images/test # test images (optional)

names: ['c17', 'c5', 'helicopter', 'c130', 'f16', 'b2',
    'other', 'b52', 'kc10', 'command', 'f15', 'kc135', 'a10',
    'b1', 'aew', 'f22', 'p3', 'p8', 'f35', 'f18', 'v22', 'f4',
    'globalhawk', 'u2', 'su-27', 'il-38', 'tu-134', 'su-33',
    'an-70', 'su-24', 'tu-22', 'il-76']
  1. 创建训练脚本:
  • 新建train.py,在train.py添加代码:
from ultralytics import YOLO
if __name__ == '__main__':
    # 加载模型
    model = YOLO("ultralytics/cfg/models/v8/yolov8l.yaml")  # 从头开始构建新模型
    print(model.model)

    # Use the model
    results = model.train(data="VOC.yaml", epochs=100, device='0', batch=16, workers=0)  # 训练模型
  • 点击run开始运行train.py进行训练。

实时目标检测代码实现

以下是一个使用 Python 和 OpenCV 实现实时目标检测的示例代码:

import cv2
from ultralytics import YOLO

# 加载模型
model = YOLO('your_model_path.pt')  # 替换为你的模型路径

# 打开摄像头
cap = cv2.VideoCapture(0)  # 0 表示默认摄像头,如果有多个摄像头可以调整这个参数

while True:
    # 读取一帧图像
    ret, frame = cap.read()

    if not ret:
        break

    # 进行目标检测
    results = model(frame)

    # 在图像上绘制检测结果
    annotated_frame = results[0].plot()

    # 显示图像
    cv2.imshow('Real-time Object Detection', annotated_frame)

    # 按下 'q' 键退出循环
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放摄像头和关闭窗口
cap.release()
cv2.destroyAllWindows()

基于丹摩智算的训练

创建一个实例,这个在我之前发布的与丹摩平台关联的文章很详细地提到过,可以跳转学习:【链接】

  1. 首先创建账号,登录;
  2. 然后点击CPU云实例,开始创建实例;
  3. 选择付费类型;
  4. 选择实力配置;
  5. 配置数据盘;
  6. 选择镜像Pytorch;
  7. 创建密钥对;

实例创建完后,就点击JupyterLab进入控制台。

然后将我们刚才创建的工程压缩成 zip 的压缩包,等待上传。

点击,文件夹样子的标签,进入根目录,然后点击,进入上传文件的页面。

选择文件,点击打开。

上传完成后,点击Termina就可以进入我们熟悉的命令行界面。

输入 ls,就可以看到我们刚才上传的压缩包。然后输入:

unzip ultralytics-main.zip

解压!

解压后就可以在左侧的目录中看到解压后的文件夹。点击进入。

点击train.py,Open With→Editor。

打开 train.py 后就可以修改 train.py 里面的参数了。

pip install opencv-python

通过以上步骤,你可以成功地进行 YoloV8 的训练和测试。无论是在本地还是基于丹摩智算平台,都能根据自己的需求进行模型的训练和优化。

在训练过程中,需要注意以下几点:

一、数据准备

  1. 确保标注的数据集准确无误,类别清晰明确。这将直接影响模型的训练效果和准确性。
  2. 在格式转换过程中,仔细检查转换后的数据集是否符合 YoloV8 的格式要求,避免出现错误。

二、参数调整

  1. 在本地调试和基于丹摩智算的训练中,可以根据实际情况调整训练参数,如 epochs(训练轮数)、batch(批大小)、device(使用的设备)等。不同的参数组合可能会对训练时间和模型性能产生影响。
  2. 对于复杂的数据集或特定的任务,可以尝试不同的模型架构和超参数,以获得更好的性能。

三、测试与评估

  1. 在测试阶段,使用不同的图像进行预测,观察模型的准确性和泛化能力。可以通过调整阈值等参数来优化预测结果。
  2. 对测试结果进行评估,如计算准确率、召回率、F1 值等指标,以了解模型的性能表现。

四、持续优化

  1. 根据测试结果和评估指标,对模型进行进一步的优化。可以尝试增加数据量、进行数据增强、调整模型结构等方法。
  2. 不断尝试新的技术和方法,以提高模型的性能和适用性。

总之,YoloV8 是一个强大的目标检测模型,通过合理的数据准备、参数调整和测试评估,可以获得良好的训练效果和准确的预测结果。希望本教程能够帮助你顺利地进行 YoloV8 的训练和测试,为你的目标检测任务提供有力的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2161082.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用ArcMap实现可视域分析

在 ArcToolbox>>3D Analyst>>可见性>>视域&#xff0c;输入值如图所示&#xff1a; 设置完成后点击确认&#xff0c;生成可视域分析图层 Viewshe1&#xff0c;由内容列表 可见&#xff0c;红色为不可见&#xff0c;绿色为可见。 改变观察点的高度&#xff1a…

pycharm下载selenium等软件包时提示下载超时

1.问题描述 我今天在pycharm运行刚写的自动化脚本时&#xff0c;提示selenium模块未导入&#xff08;自动到导入&#xff09;&#xff0c;鼠标移动到【from selenium import webdriver]的selenium时&#xff0c;显示【未存在文档】 2 解决办法 文件--设置--项目&#xff1a;当前…

企业智能培训新方案,高效打造金牌员工

标品市场竞争激烈&#xff0c;小微企业因长期专注于非标业务或者偏定制化路线&#xff0c;在团队专业能力与大型企业间存在显著差距。专业人才短缺、培养成本高企、培训滞后、效果难测、资源不均、考核标准不一及知识转化率低等问题&#xff0c;成为其业务转型的绊脚石。 如何高…

红外热成像应用场景!

1. 电力行业 设备故障检测&#xff1a;红外热成像仪能够检测电气设备&#xff08;如变压器、电线接头&#xff09;的过热现象&#xff0c;及时发现并定位故障点&#xff0c;预防火灾等安全事故的发生。 水电站查漏&#xff1a;在水电站中&#xff0c;红外热成像仪可用于快速查…

windows自带的录屏功能好用吗?这4款录屏工具也是不错的选择。

因为现在很多人都会有录屏需求&#xff0c;所以平常使用的一些设备当中会有自带的录屏功能。比如windows10系统下只要按下键盘上的 “WinG” 键&#xff0c;就可打开录屏功能。但是录制的时长会有限制&#xff0c;并且录屏功能会有些限制。如果对录屏有更多的需求&#xff0c;可…

网络设备驱动中的调试级别msglevel

网络设备驱动调试级别可以在驱动初始化过程中赋初值&#xff0c;并通过ethtool_ops中.get_msglevel获取&#xff0c;通过.set_msglevel进行设置或修改&#xff0c;并通过如netif_msg_drv这样的宏函数来在需要打印调试信息时进行判断&#xff0c;为真时输出对应级别的调试信息&a…

QT----基于QML的计时器

赶上了实习的末班车,现在在做QML开发,第一天的学习成果,一个计时器.逻辑挺简单的,纯QML实现,代码在仓库QT-Timer 学习使用c的listmodel 学习使用了如何用c的listmodel来存储数据. 新建一个TImeListModel类继承自QAbstractListModel class TimeListModel : public QAbstrac…

AIGC基础工具-科学计算和数据处理的重要库NumPy(Numerical Python)简介

文章目录 1. NumPy 的核心概念1.1 ndarray&#xff1a;多维数组对象示例代码 2. NumPy 的数据类型 (dtype)示例代码 3. NumPy 的数组创建方法3.1 使用 array() 创建数组3.2 使用 zeros() 和 ones()3.3 使用 arange() 和 linspace()3.4 使用 random 模块生成随机数组 4. NumPy 数…

AOT源码解析4.3-model主体解析

1.添加参考图像&#xff08;add_reference_frame&#xff09; 1.1 生成位置编码和ID编码 具体操作见详情。 图1&#xff1a;如图所示&#xff0c;显示的是参考图像的位置编码和id编码的生成过程。对于id编码&#xff0c;将mask图像输入进conv2d卷积网络后&#xff0c;进行结…

容器化安装Jenkins部署devops

基础环境介绍 系统使用的是centos7.9 内核使用的是5.16.13-1.el7.elrepo.x86_64 容器使用的是26.1.4 docker-compose使用的是 v2.29.0 链路图 devops 配置git环境插件 部署好jenkins后开始配置 jenkins连接git&#xff0c;这里需要jenkins有连接git的插件。在已安装的插件…

【SD教程】图片也能开口说话?别惊讶!用SadTalker插件,一键生成自己的数字人,本地部署,免费使用!(附资料)

最近数字人越来越火&#xff0c;连互联网大佬都纷纷下场&#xff0c;比如360的周鸿祎&#xff0c;京东的刘强东等等。小伙伴可能也想拥有自己的数字人如果想用最简单的方式&#xff0c;那么可以用第三方的网站&#xff0c;例如 HeyGen平台、腾讯的智影等等。可这些网站都是收费…

HFSS中看TDR波形详细设置以及相关的解释

时域反射测量&#xff08;TDR&#xff09;中心思想就是用阶跃函数作为激励&#xff0c;应用在模型上&#xff0c;并检查反射随时间的变化。在检查时域之前&#xff0c;必须对driven solution&#xff08;Modal、Terminal或Transient&#xff09;执行插值扫描。然后&#xff0c;…

vite分目录打包以及去掉默认的.gz 文件

1.vite打包情况介绍&#xff1a; 1.1vite在不进行任何配置的情况下&#xff0c;会将除开public的所有引用到资源打包编译添加哈希值至assets文件夹中&#xff08;非引用文件以及行内样式图片未被打包编译资源会被treeSharp直接忽略不打包&#xff09;&#xff0c;     1.2w…

阿里云函数计算 x NVIDIA 加速企业 AI 应用落地

作者&#xff1a;付宇轩 前言 阿里云函数计算&#xff08;Function Compute, FC&#xff09;是一种无服务器&#xff08;Serverless&#xff09;计算服务&#xff0c;允许用户在无需管理底层基础设施的情况下&#xff0c;直接运行代码。与传统的计算架构相比&#xff0c;函数…

极星Polestar EDI 项目案例

近期国内汽车行业供应商J公司收到了极星Polestar的邀请&#xff0c;需要通过EDI与其国内工厂传输业务数据。本案例将为大家介绍对接过程以及实施方案。 梳理需求文档 极星Polestar的EDI需求与Volvo一样&#xff0c;传输协议选择 OFTP&#xff0c;报文标准为EDIFACT&#xff0…

Swing模拟银行柜台系统

> 这是一个基于JavaSwing实现的模拟银行柜台系统。 > 具有管理员、柜员、客户三种登录角色。 > 支持开户、注册、存取款、转账、汇款、账单查询等功能。 > 本项目适合JAVA初学者作为入门学习项目。 一、部分界面演示 二、基础依赖 技术/框架版本描述Java11编…

Vue前端浏览器指纹获取:数字世界的身份密码

程序员必备宝典https://tmxkj.top/#/一个开源的JavaScript库&#xff0c;它通过收集用户浏览器的多种属性&#xff08;如屏幕分辨率、浏览器插件、字体、Canvas和WebGL等&#xff09;来生成一个独特的浏览器指纹&#xff0c;用于识别和追踪用户。 #Github地址 GitHub - finger…

Uniapp时间戳转时间显示/时间格式

使用uview2 time 时间格式 | uView 2.0 - 全面兼容 nvue 的 uni-app 生态框架 - uni-app UI 框架 <text class"cell-tit clamp1">{{item.create_time}} --- {{ $u.timeFormat(item.create_time, yyyy-mm-dd hh:MM:ss)}} </text>

apply、call和bind的作用和区别

apply与call 首先介绍一下apply与call&#xff0c;因为这两个方法的功能和使用方式都差不多&#xff0c;只是传参的方式不同。call和apply的作用都是改变函数运行时的上下文&#xff08;context&#xff09; 语法 fun.call(thisArg, arg1, arg2, ...)fun.apply(thisArg, arg…

类的难疑点

一、知识点 1、类的属性和对象属性&#xff08;实例属性&#xff09; shuxing"123" self.shuxing"123" 2、类的对象 self.loginMyclass() loginMyclass() 3、访问类属性和方法的操作 通过“类名.属性”访问&#xff1a;Myclass.shuxing 通…