【二等奖论文】2024年华为杯研赛D题成品论文(后续会更新)

news2025/1/12 0:45:37

您的点赞收藏是我继续更新的最大动力!

一定要点击如下的卡片,那是获取资料的入口!

点击链接获取【2024华为杯研赛资料汇总】:

https://qm.qq.com/q/jTIeGzwkScicon-default.png?t=O83Ahttps://qm.qq.com/q/jTIeGzwkSc

题 目:   ­­­­大数据驱动的地理综合问题       

摘 要:

地理系统是自然、人文多要素综合作用的复杂巨系统,地理学家常用地理综合的方式对地理系统进行主导特征的表达,本文利用大数据的手段对地理系统进行综合,探索全球气候变化下中国地理环境的演化。

针对问题一,本文首先对数据进行清洗,替换一些取值较大或较小的特殊值,并利用

准则确定一些离群点,然后使用数字、图表等方式,对原始数据进行定量总结、概括,得出了一些降水量、土地利用/土地覆被面积两个变量的在1990至2020年间中国范围内的时空演化特征。

针对问题二,首先利用逻辑回归模型量化地形-气候相互作用在极端天气形成过程中的作用,再用格兰杰因果检验和斯皮尔曼相关系数加以检验,确定它们之间的相互作用,验证了本文模型建立的有效性,为后文预测的准确性奠定基础。

针对问题三,首先对题目中提到的自变量进行量化,建立逻辑回归模型,再利用移动平均线模型和LSTM神经网络进行预测,将预测的数据代入前面建立的逻辑回归模型进行降水量的预测,利用不同的成灾临界值可确定不同的防范政策。若需要推广至多分类问题,为不同地区制定不同政策,也即对全国所有城市分类出应对暴雨灾害能力最为脆弱、较为脆弱、一般、不脆弱等类的话,只需将本文中的成灾临界值调为阶梯型的函数即可,增强模型的泛化能力。

针对问题四,将数据集3的降水量、数据集5的人口数量、数据集6的GDP数据作为中国土地利用变化的影响因素,重复问题一的描述性统计,与问题二、三的建模进行分析,描述中国土地利用变化的特征与结构,并从准确性和有用性两个方面总结解释本文所建立的模型与获得的结果。

关键词:逻辑回归;LSTM;大数据可视化;格兰杰因果检验;斯皮尔曼相关系数

一、问题重述

    1. 问题背景

地理系统是自然、人文多要素综合作用的复杂巨系统,地理学家常用地理综合的方式对地理系统进行主导特征的表达。如以三大阶梯概括中国的地形特征,以秦岭—淮河一线和其它地理区划的方式揭示中国气温、降水、植被、土壤及生态环境在水平和垂直方向上的地带性与非地带性规律,利用胡焕庸线、T型开发结构等描绘我国人口、社会和经济发展的总体格局。这些方法早期以宏观结构和定性分析为主体,对我国生态保护、社会经济发展和国家安全保障起到了巨大的支撑作用。伴随着对地观测体系的快速发展,当前已经积累了巨量的对地观测数据。如何利用大数据的手段对地理系统进行综合,探索全球气候变化下中国地理环境的演化,是当前地球科学研究的关键问题。

    1. 问题回顾

问题1:在众多描述地理环境的变量中,一些简单的指标背后蕴藏了深厚的内涵,对人类的生存发展具有重大深远的影响,如大气中二氧化碳的浓度、全球年平均气温等。降水量是一个连续变化的变量,而土地利用/土地覆被类型则是一个存在突变和离散分布的变量。同时,它们都具有时空分布不均匀的特征。请从附件数据中选取相关数据集,为这两个变量分别构建一套描述性统计方法,用1到3个较为简洁的统计指标或统计图表,对这两个变量在1990~2020年间中国范围内的时空演化特征进行描述和总结。

问题2:近年来,以暴雨为代表的极端天气事件对人类的生产生活造成了越来越难以忽视的影响。请结合附件中所给的数据,建立数学模型,说明地形-气候相互作用在极端天气形成过程中的作用。

问题3:降雨、地形和土地利用对于暴雨等极端天气灾害的形成都具有不可忽视的影响。这其中,降雨的时空变异性和不可控性都最强;土地利用作为自然条件和人类活动的综合结果,虽然也随时空演化,但具有一定可控性;地形是最为稳定、不易改变的因素。请考虑第2问所反映的从“暴雨”到“灾害”中上述三方面因素的角色及其交互作用,确定暴雨成灾的临界条件;并结合第1问中降雨量和土地利用/土地覆被变化的历史时空演化特征,对2025至2035年间中国境内应对暴雨灾害能力最为脆弱的地区进行预测。请以地图的形式呈现你们的预测结果。

问题4:在中国级别的尺度上,描述自然地理特征的地形可以概括为“三级阶梯”,而降水中具有标志性意义的“800mm等降水量线”则与区分我国南北方的“秦岭—淮河”一线大体重合;描述人文地理特征的人口分布及其社会经济活动总量等指标,则被由连接黑龙江黑河与云南腾冲的“胡焕庸线”清晰地划分成东密西疏的两部分。那么,对于自然地理和人文地理交汇点的土地利用/土地覆被情况,结合其在前三问中描述、估计和预测任务中的“特性”,利用地理大数据,建立相应的数学模型,对数据进行简化和综合,描述中国土地利用变化的特征与结构。从准确性和有用性两个方面解释验证你们的总结。

二、问题分析

2.1 问题一分析

针对问题一,本文首先对数据进行清洗,替换一些取值较大或较小的特殊值,然后使用数字、图表等方式,对原始数据进行定量总结、概括,得出了一些降水量、土地利用/土地覆被面积两个变量的在1990至2020年间中国范围内的时空演化特征。

2.2 问题二分析

针对问题二,首先利用逻辑回归量化地形-气候相互作用在极端天气形成过程中的作用,再用格兰杰因果检验和斯皮尔曼相关系数加以检验,确定它们之间的相互作用,验证了本文模型建立的有效性,为后文预测的准确性奠定基础。

2.3 问题三分析

针对问题三,首先对题目中提到的自变量进行量化,建立逻辑回归模型,再利用移动平均线模型和LSTM神经网络进行预测,将预测的数据代入前面建立的逻辑回归模型进行降水量的预测,利用不同的成灾临界值可确定不同的防范政策。若需要推广至多分类问题,为不同地区制定不同政策,也即对全国所有城市分类出应对暴雨灾害能力最为脆弱、较为脆弱、一般、不脆弱等类的话,只需将本文中的成灾临界值调为阶梯型的函数即可,增强模型的泛化能力。

2.3 问题四分析

针对问题四,将数据集3的降水量、数据集5的人口数量、数据集6的GDP数据作为中国土地利用变化的影响因素,重复问题一的描述性统计,与问题二、三的建模进行分析,描述中国土地利用变化的特征与结构,并从准确性和有用性两个方面总结解释本文所建立的模型与获得的结果。

三、模型假设

1、假设所有使用的气象、地形和土地利用数据都是准确和可靠的。

2、假设在研究期间内,中国的地形变化不大,可以认为是稳定的。

3、假设在未来预测期间,现有的社会经济发展趋势和政策导向将持续

4、在模型中,假设人类活动对土地利用变化的影响可以通过现有数据进行合理估计,并在模型中得到体现。

5、在分析暴雨成灾的临界条件时,假设一个地区的灾害风险主要受当地气候、地形和土地利用因素的影响,而较少受到远离地区的影响。

6、假设数据记录时不存在漏记错记的情况。

四、符号说明

符号

说明

Xtij

Logistic模型中的自变量

Ytij

Logistic模型的自变量

Ztij

Logistic模型的因变量

自变量与因变量之间的映射机制

MAPE

平均绝对百分比误差

i个序列误差

斯皮尔曼相关系数

置信水平

LSTM中的隐藏状态

Wi

LSTM中的可学习参数

σ

标准差

注:这里只列出论文各部分通用符号,个别模型单独使用的符号在首次引用时会进行说明。

五、模型建立与求解

5.1 数据清洗

对于数据集3,数据集中将中国以外的经纬度上的降水量数据均设为了-99.9,在后续数据处理中,因问题一中需要建立统计指标与统计图表,将-99.9设为0,防止这些数据对一些边界地区的降水量指标造成影响。对于人口、GDP等数据的处理方式相同,将其中的-NAN或NAN替换为0.

图1 数据集3中取某一天的降水量的可视化

利用Python进行编程将负值设为0,并进行可视化后的结果可见图2。将NetCDF文件中的数据daily precipitation也即pre的数据取出转化为矩阵的形式,利用

准则对异常数据进行分析,此时并不进行剔除,在问题二和三中对“暴雨”和“成灾”界定后再进行剔除。于此同时,对于其他数据集的如GDP、人口、地形、气温,土地利用和覆盖,以每一年为一个样本,利用

准则对异常数据进行分析并剔除。

图2 处理后的数据集3的降水量可视化

5.2 问题一模型的建立与求解

5.2.1 问题一模型的建立与求解

首先对这降水量在1990至2020年间中国范围内的时空演化特征进行描述和总结,首先固定空间分析该变量随时间变化的趋势,

图3

图4

从波动来看最大值与最小值的差距并不是特别明显,每年基本上都维持在当地的一个平均水平上。但从月降水量的波动来看,全国的月降水量明显呈现出季节趋势,存在着明显的波峰与波谷。(为降重考虑,大家可以自行补充语

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2156591.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

fastadmin 根据选择数据来传参给selectpage输入框

文章目录 js代码php代码:完结 js代码 $(document).on(change,#table .bs-checkbox [type"checkbox"],function(){let url$(#chuancan).attr(data-url)urlurl.split(?)[0]let idsTable.api.selectedids(table)if(ids.length){let u_id[]ids.forEach(eleme…

torch.embedding 报错 IndexError: index out of range in self

文章目录 1. 报错2. 原因3. 解决方法 1. 报错 torch.embedding 报错: IndexError: index out of range in self2. 原因 首先看下正常情况: import torch import torch.nn.functional as Finputs torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]]) embedd…

【C++ Primer Plus习题】17.3

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: #include <iostream> #include <fstream> using namesp…

PHP、Java等其他语言转Go时选择GoFly快速快速开发框架指南

概要 经过一年多的发展GoFly快速开发框架已被一千多家科技企业或开发者用于项目开发&#xff0c;它的简单易学得到其他语言转Go首选框架。且企业版的发展为GoFly社区提供资金&#xff0c;这使得GoFly快速框架得到良好的发展&#xff0c;GoFly技术团队加大投入反哺科技企业和开…

数据结构之搜索二叉树

目录 一、什么是搜索二叉树 基本概念 特点 注意事项 二、搜索二叉树的C实现 2.0 构造与析构 2.1 插入 2.2 查找 2.3 删除 2.3.1 无牵无挂型 2.3.2 独生子女型 2.3.3 儿女双全型 三、搜索二叉树的应用 3.1 key搜索 3.2 key/value搜索 一、什么是搜索二叉树 搜索二…

EAGLE——探索混合编码器的多模态大型语言模型的设计空间

概述 准确解释复杂视觉信息的能力是多模态大型语言模型 (MLLM) 的关键重点。最近的研究表明&#xff0c;增强的视觉感知可显著减少幻觉并提高分辨率敏感任务&#xff08;例如光学字符识别和文档分析&#xff09;的性能。最近的几种 MLLM 通过利用视觉编码器的混合来实现这一点…

科研绘图系列:R语言ggplot2画热图(heatmap)

文章目录 介绍加载R包导入数据数据预处理画图导出数据系统信息介绍 热图(Heatmap)是一种数据可视化技术,它通过颜色的变化来表示数据的大小或者密度。热图通常用于展示两个变量之间的关系,或者在二维空间上展示数据的分布情况。以下是热图可以表示的一些内容: 数据分布:…

网络原理 HTTP与HTTPS协议

博主主页: 码农派大星. 数据结构专栏:Java数据结构 数据库专栏:MySQL数据库 JavaEE专栏:JavaEE 关注博主带你了解更多计算机网络知识 目录 1.HTTP概念 2.HTTP报文格式 3.HTTP请求 1.首行 1.1URL 1.2 GET⽅法 1.3 POST⽅法 1.4 其他⽅法 2.请求头&#xff08;head…

JVM面试问题集

什么是JVM? 了解过字节码文件的组成吗? 说一下运行时数据区 哪些区域会出现内存溢出&#xff0c;会有什么现象? JM在JDK6-8之间在内存区域上有什么不同 类的生命周期 什么是类加载器 什么是双亲委派机制 打破双亲委派机制 Tomcat的自定义类加载器

【网络通信基础与实践番外一】多图预警之图解UDP和TCP前置知识

参考大佬的文章https://www.cnblogs.com/cxuanBlog/p/14059379.html 一、宏观架构中的传输层 在计算机中&#xff0c;任何一个可以交换信息的介质都可以称为端系统。计算机网络的运输层则负责把报文从一端运输到另一端&#xff0c;运输层实现了让两个互不相关的主机进行了逻辑…

Kafka-Manager安装及操作

文章目录 一、kafka-manager介绍二、kafka-manager安装三、Kafka-Manager操作 一、kafka-manager介绍 CMAK (Cluster Manager for Apache Kafka, previously known as Kafka Manager) CMAK (previously known as Kafka Manager) is a tool for managing Apache Kafka cluster…

STM32篇:开发环境安装

编程语言&#xff1a;C语言 需要安装的软件有两个&#xff1a;Keil5 和 STM32CubeMX 一.Keil5 的安装 使用 Keil4 写 STM32 代码其实也是可以&#xff0c;但需要很复杂的配置&#xff0c;不建议新手操作。 比较推荐 Keil5 编写 STM32 &#xff0c;只需要一些简单的设置就可…

(一)Lambda-Stream流

概述 Java8的Stream使用的是函数式编程模式&#xff0c;它可以被用来对集合或数组进行链状流式的操作&#xff0c;可以更方便地让我们对集合或数组操作。 使用Stream流程&#xff1a; 创建流 -> 中间操作 -> 终结操作; 注&#xff1a;必须要有终结操作否则中间操作不生效…

hive-拉链表

目录 拉链表概述缓慢变化维拉链表定义 拉链表的实现常规拉链表历史数据每日新增数据历史数据与新增数据的合并 分区拉链表 拉链表概述 缓慢变化维 通常我们用一张维度表来维护维度信息&#xff0c;比如用户手机号码信息。然而随着时间的变化&#xff0c;某些用户信息会发生改…

7.搭建个人金融数据库之快速获取股票列表和基本信息!

前边我们提过&#xff0c;免费的数据一般来自于爬虫&#xff0c;获取难度和维护成本都比较高&#xff0c;其实不太适合小白用户。所以非必要情况下&#xff0c;我们尽量不用这种方式来获取数据。 我自己用的比较多的是tushare&#xff0c;一般来说有它也就够了&#xff0c;大…

Junit4测试报错:java.lang.NoClassDefFoundError: org/junit/runner/manipulation/Filter

原来build path 界面&#xff1a; Junit为Modulepath 应把Junit改为Classpath即可&#xff0c;如下图所示&#xff1a;

前端和后端的相对路径和绝对路径

1. 相对路径访问图片 test.html 位于 web/a/b/c/ 目录中&#xff1a; 若要访问 static/img/ 文件夹中的图片&#xff08;假设图片名为 image.png&#xff09;&#xff0c;相对路径应该是&#xff1a; <img src"../../../static/img/image.png" alt"Image&quo…

Java笔试面试题AI答之设计模式(3)

文章目录 11. Spring开发中的哪里使用了工厂设计模式 &#xff1f;1. BeanFactory2. 工厂方法模式3. 抽象工厂模式4. 示例说明总结 12. 什么是代理模式 &#xff1f;13. 请列举代理模式的应用场景 &#xff1f;14. 什么是原型模式 &#xff1f;15. 请简述Java中原型模式的使用方…

Mixamo动画使用技巧

1、登录Mixiamo网站 2、下载人物模型 3、找到FBX文件 选中人形骨骼 3、下载动画 4、拖拽FBX 5、注意事项 生成的FBX文件中会包含一个骨骼一个动画 如果人物有骨骼&#xff0c;则不需要&#xff0c;没有需要对应此包中的骨骼&#xff0c;骨骼不可以通用&#xff0c;动画通用 …

百度智能云API调用

植物识别API import base64 import urllib import requestsAPI_KEY "你的图像识别API_KEY" SECRET_KEY "你的图像识别SECRET_KEY"def main():url "https://aip.baidubce.com/rest/2.0/image-classify/v1/plant?access_token" get_access_t…